Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 209-218 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sohbatzadeh F, Barzegar M, Hosseinzadeh Colagar A. Comparing Bactericidal Effect of Pulsed Flash Lamp and Continuous Sterilization UV Lamps with a Cold Atmospheric Pressure Plasma Jet on E. Coli Solid Growth Medium. IJOP. 2021; 15 (2) :209-218
URL: http://ijop.ir/article-1-447-en.html
1- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran.
2- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Iran.
Abstract:   (112 Views)
Pulsed UV sterilizer lamps and cold atmospheric pressure plasma are the newest technologies that have been proposed as feasible alternatives in the traditional sterilization method. The main objective of this project was to compare the sterilization effect of these two technologies (Pulsed UV lamps and cold atmospheric pressure plasma) with continuous UV lamps on Escherichia coli bacteria. Although Continuous UV lamps are widely used in different organizations such as hospitals for sterilization, they take hours to sterilize the medium. There are methods that can effectively decay the bacteria surface in a few minutes; it is called cold atmospheric plasma jet. Since sterilization has gained lots of attention, many researches are performing by other methods. This project releases how atmospheric plasma can strongly influence better on decaying Escherichia coli bacteria compared to two other techniques; Xenon arc lamp, continuous UV lamp. The results suggested that the xenon pulsed flash lamps with Pyrex envelope have the ability to sterilize the surface of the bacterium with at least 80 pulses. The results of atmospheric plasma flow on the bacterial surface have been proved that the reactive species (OH radicals, charged particles, NO, ozone, O3, in the plasma jet caused a significant decline in the colony numbers; after 6 minutes treatment by plasma jet, there was a great reduction in the number of colonies up to zero. Also, the effect of the commercial continuous UV sterilizer lamp was used and its sterilization results were compared to pulsed flash lamps and cold atmospheric plasma. These results demonstrate that pulsed light treatment can be effective on destroying Escherichia coli bacteria due to its high energy and short operating time.
Full-Text [PDF 883 kb]   (40 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2021/01/19 | Revised: 2022/03/13 | Accepted: 2022/03/14 | Published: 2022/03/18

References
1. P. Roger, Sources and applications of Ultraviolet Radiation, Academic Press, London, 1983.
2. Yu. B. Aizenberg Ed, Spravochnaya kniga po svetotekhnike, Moscow: Znak, 2006.
3. P. Kong, "Atmospheric Pressure Plasma Process and Applications". In Sohn International Symposium; Sep. 2006 Advanced Processing of Metals and Materials Volume 6: New, Improved and Existing Technologies: Aqueous and Electrochemical Processing, IEEE Photonic Technology Letter, Vol. 6, pp. 493-506.
4. Y.M.K. Sharifi and H. Dargahi. "Inactivation of pathogenic bacteria using pulsed UV-light and its application in water disinfection and quality control," Acta Medica Iranica, Vol. 44, pp. 305-308, 2006.
5. A. Wekhof, F.J. Trompeter, and O. Franken, "Pulsed UV disintegration (PUVD): a new sterilisation mechanism for packaging and broad medical-hospital applications". In The first International Conference on Ultraviolet Technologies, p. 15, 2001.
6. L.M. Vasilyak, "Application of pulsed electrical discharge lamps for bactericidal treatment". Surface Eng. Appl. Electrochem. Vol. 45, pp. 26-34, 2009.
7. T. Gerling and K.D. Weltmann, Einfhrung in Atmosphrendruck-Plasmaquellen fur plasmamedizinische Anwendung, Springer-Verlag, Berlin Heidelberg, Plasmamedizin, 2016. (book chapter). [DOI:10.1007/978-3-662-52645-3_1]
8. K.-D. Weltmann, M. Polak, K. Masur, T. Von Woedtke, J. Winter, and S. Reuter, "Plasma processes and plasma sources in medicine," Contributions Plasma Phys. Vol. 52, No. 7, pp. 644-654, 2012. [DOI:10.1002/ctpp.201210061]
9. K.-D. Weltmann, J. Winter, M. Polak, J. Ehlbeck, and T.V. Woedtke, Atmospheric pressure plasmas for decontamination of complex medical devices, Plasma Bio-Decontamination, Medicine Food Security, Springer, Dordrecht, pp. 3-15, 2012. [DOI:10.1007/978-94-007-2852-3_1]
10. G.E. Morfill and J.L. Zimmermann, "Plasma health care - old problems, new solutions," Contributions Plasma Phys. Vol. 52, No. 7, pp. 655-663, 2012. [DOI:10.1002/ctpp.201210062]
11. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. Von Woedtke, R. Brandenburg, T. Von dem Hagen, and K.D. Weltmann, "Low temperature atmospheric pressure plasma sources for microbial decontamination," J. Phys. D: Appl. Phys. Vol. 44, No. 1, pp. 013002 (1-34), 2011.
12. T. Woedtke, A. Kramer, and K.-D. Weltmann, "Plasma sterilization: what are the conditions to meet this claim?" Plasma Processes Polymers, Vol. 5, No. 6, pp. 534-539, 2008. [DOI:10.1002/ppap.200800013]
13. M. Moreau, N. Orange, and M.G.J. Feuilloley, "Non-thermal plasma technologies: new tools for bio-decontamination," Biotechnol. Adv. Vol. 26, No. 6, pp. 610-617, 2008. [DOI:10.1016/j.biotechadv.2008.08.001] [PMID]
14. M. Laroussi, "Low temperature plasma-based sterilization: overview and state-of-the-art," Plasma Processes Polymers, Vol. 2, No. 5, pp. 391-400, 2005. [DOI:10.1002/ppap.200400078]
15. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L.H. Yahia, "Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms," Int. J. Pharmaceutics, Vol. 226, No. 1-2, pp. 1-21, 2001. [DOI:10.1016/S0378-5173(01)00752-9]
16. A. Wekhof, "Disinfection with flash lamps," PDA J. Pharmaceutical Science Technol. Vol. 54, pp. 264-276, 2000.
17. T.P.A. Devasagayam, K.K. Boloor, and T. Ramasarma, "Methods for estimating lipid peroxidation: an analysis of merits and demerits,", Indian J. Biochem. Biophys. Vol. 40, pp. 300-308, 2003.
18. A. Hiromoto, Method of sterilization, U.S. Patent 4464336, 1984.
19. S.M. Mortazavi, A. Hosseinzadeh Colagara, and F. Sohbatzadeh, "The Efficiency of the Cold Argon-oxygen Plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient," Iran J. Med. Microbiol. Vol. 10, pp. 19-30, 2016.
20. V.M. Gomez-Lopez, P. Ragaert, J. Debevere, and F. Devlieghere, "Pulsed light for food decontamination: a review," Trends food Sci. Technol., Vol. 18, pp. 464-473, 2007. [DOI:10.1016/j.tifs.2007.03.010]
21. R.M. Oducado, M.K.Q. Amboy, A.C. Penuela, and R.G. Belo-Delariarte, "Correlation between theoretical classroom instruction and related learning experiences: Evidence from a Philippine nursing university," Int. J. Sci. Technol. Research, Vol. 8, pp. 3666-3670, 2019.
22. L. Yang, J. Chen, and J. Gao, "Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms," J. Electrostatics, Vol. 67, pp. 646-651, 2009.
23. M. Moreau, N. Orange, and M.G.L. Feuilloley, "Non-thermal plasma technologies: new tools for bio-decontamination", Biotechnology Adv. Vol. 26, pp. 610-617, 2008. [DOI:10.1016/j.biotechadv.2008.08.001] [PMID]
24. H.P. Song, B. Kim, J.H. Choe, S. Jung, S.Y. Moon, W. Choe, and C. Jo, "Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes," Food Microbiology, Vol. 26, pp. 432-436, 2009. [DOI:10.1016/j.fm.2009.02.010] [PMID]
25. S.G. Joshi, M. Cooper, A. Yost, M. Paff, U.K. Ercan, G. Fridman, G. Friedman, A. Fridman, and A.D. Brooks, "Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli," Antimicrobial Agents Chemotherapy, Vol. 55, pp. 1053-1062, 2011. [DOI:10.1128/AAC.01002-10] [PMID] [PMCID]
26. L.F. Gaunt, C.B. Beggs, and G.E. Georghiou, "Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review," IEEE Trans. Plasma Sci. Vol. 34, pp. 1257-1269, 2006. [DOI:10.1109/TPS.2006.878381]
27. A. Hosseinzadeh Colagar, F. Sohbatzadeh, S. Mirzanejhad, and A. Valinataj Omran, "Sterilization of Streptococcus pyogenes by afterglow dielectric barrier discharge using O2 and CO2 working gases," Biochemical Eng. J. Vol. 51, pp. 189-193, 2010. [DOI:10.1016/j.bej.2010.06.017]
28. M. Moisan, J. Barbeau, M.C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, "Plasma sterilization. Methods and mechanisms," Pure Appl. Chem. Vol. 74, pp. 349-358, 2002. [DOI:10.1351/pac200274030349]
29. O. Kylian, M. Hasiwa, and F. Rossi, "Effect of low-pressure microwave discharges on pyrogen bioactivity", IEEE Trans. Plasma Sci. Vol. 34, pp. 2606-2610, 2006. [DOI:10.1109/TPS.2006.885093]
30. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L.H. Yahia, "Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms," Int. J. Pharm. Vol. 226, pp. 1-21, 2001.
31. H. Uhm, J.P. Lim, and S.Z. Li, "Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet," Appl. Phys. Lett. Vol. 90, pp. 261501 (1-3), 2007. [DOI:10.1063/1.2747177]
32. M.K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines, "Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture," J. Phys. D: Appl. Phys. Vol. 39, pp. 3494-3507, 2006. [DOI:10.1088/0022-3727/39/16/S07]
33. Website: http://www.verre-et-quartz.fr. Company Type: Private. Business Started: 1947.available at: www.flashlamps-vq.com/CatalogueVQF.pdf.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb