Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 3-10 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sepahvand N, Bahrami M. Effects of Variation of the Organic Solar Cell Layers’ Dimensions on Electrical Charge Carrier Transfer. IJOP. 2021; 15 (1) :3-10
URL: http://ijop.ir/article-1-432-en.html
1- Lorestan University
Abstract:   (156 Views)
In this work, the effect of changing the dimensions of the layer structure on the collection of electrical charge carriers which been produced in the thin film composed of P3HT[1] and PCBM[2] that is between two electrodes, using the Monte Carlo numerical simulation with Bortez, Callus and Lebowitz algorithms, with checkered structure and different dimensions 60×15×5 sites, 60×30×5 sites, have been the conditions of the layers. At first, the average number of electrons and holes produced on the cathode and anode electrodes in two stages (simultaneous injection of excitons, without and with the presence of deep traps) was calculated and it was concluded that, by increasing layer width, the average number of electrical charge carriers collected on the electrodes has decreased, which has a direct impact on production of layer circuits and solar cell performance. Finally, the amount of external quantum efficiency of the layers was also calculated. In 60×15×5 sites layer, in two stages – without and with the presence of traps – the average value of external quantum efficiency 52.3% and 42.43% was obtained and in 60×30×5 sites layer, the value of 42.43% and 37.9% was calculated.
 
[1] Poly(3-hexylthiophene)
[2] Phenyl-C61-butyric acid methyl ester
Full-Text [PDF 1070 kb]   (106 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/11/7 | Revised: 2021/05/7 | Accepted: 2021/05/15 | Published: 2021/05/25

References
1. [1] K.K. Sadasivuni, K. Deshmukh, T. Ahipa, A. Muzaffar, M.B. Ahamed, S.K. Pasha, and M.A.-A. Al-Maadeed, "Flexible, biodegradable and recyclable solar cells: a review," J. Mater. Sci.: Mater. Electron, Vol. 30, pp. 951-974, 2019. [DOI:10.1007/s10854-018-0397-y]
2. [2] A. Khalil, Z. Ahmed, F. Touati, and M. Masmoudi, "Review on organic solar cells," in: 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE. Vol. 124, pp. 342-353, 2016. [DOI:10.1109/SSD.2016.7473760] [PMCID]
3. [3] J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, M. Jagadesh, and L. Arivazhagan, "A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies," Superlattices and Microstructures, Vol. 143, pp. 106549 (1-53), 2020. [DOI:10.1016/j.spmi.2020.106549]
4. [4] L. Yao, A. Rahmanudin, N. Guijarro, and K. Sivula, "Organic semiconductor based devices for solar water splitting," Adv. Energy Mater, Vol. 8, pp. 1802585 (1-18), 2018. [DOI:10.1002/aenm.201802585]
5. [5] M.P. Paranthaman, W. Wong-Ng, and R.N. Bhattacharya, Semiconductor materials for solar photovoltaic cells, Springer, 2016. [DOI:10.1007/978-3-319-20331-7]
6. [6] W. Brütting, "Physics of Organic Semiconductors," Phys. Status Solidi A, Vol. 201, pp. 1031-1031, 2004. [DOI:10.1002/pssa.200490009]
7. [7] M. Wright and A. Uddin, "Organic-inorganic hybrid solar cells: A comparative review," Sol. Energy Mater. Sol. Cells, Vol. 107, pp. 87-111, 2012. [DOI:10.1016/j.solmat.2012.07.006]
8. [8] J. Asare, B. Agyei-Tuffour, O. Oyewole, V. Anye, D. Momodu, G. Zebaze-Kana, and W. Soboyejo, "Effects of Deformation on Failure Mechanisms and Optical Properties of Flexible Organic Solar Cell Structures," Trans Tech Publ. Vol. 1132, pp. 125-143, 2016. [DOI:10.4028/www.scientific.net/AMR.1132.125]
9. [9] N. Sadoogi, A. Rostami, B. Faridpak, and M. Farrokhifar, "Performance analysis of organic solar cells: Opto-electrical modeling and simulation," Eng. Sci. Technol. an Int. J. Vol. 24, pp. 229-235, 2021. [DOI:10.1016/j.jestch.2020.08.006]
10. [10] W. Farooq, A.D. Khan, A.D. Khan, and M. Noman, "Enhancing the power conversion efficiency of organic solar cells," Optik. Vol. 208, pp. 164093 (1-10), 2020. [DOI:10.1016/j.ijleo.2019.164093]
11. [11] N. Tessler, and Y. Vaynzof, "Insights from Device Modeling of Perovskite Solar Cells," ACS Energy Lett. Vol. 5, pp. 1260-1270, 2020. [DOI:10.1021/acsenergylett.0c00172]
12. [12] X. Zhao, B. Mi, Z. Gao, and W. Huang, "Recent progress in the numerical modeling for organic thin film solar cells," Sci. China: Phys. Mech. Ast. Vol. 54, pp. 375-387, 2011. [DOI:10.1007/s11433-011-4248-6]
13. [13] N. Xi, M. Zhang, and G. Li, Modeling and Control for Micro/Nano Devices and Systems, CRC Press. 2013.
14. [14] X. Xu, Monte Carlo simulation of charge transport in organic solar cells, Thesis, Duke University. 2012.
15. [15] U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi, and Q. Qiao, "Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness," Nano energy. Vol. 35, pp. 128-137, 2017. [DOI:10.1016/j.nanoen.2017.03.041]
16. [16] W. Tress, "Device Physics of Organic Solar Cells: Drift-Diffusion Simulation in Comparison with Experimental Data of Solar Cells Based on Small Molecules," Saechsische Landesbibliothek-Staats-und Universitaetsbibliothek Dresden. 2012.
17. [17] P.K. Watkins, A.B. Walker, and G.L. Verschoor, "Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology," Nano Lett. Vol. 5, pp. 1814-1818, 2005. [DOI:10.1021/nl051098o] [PMID]
18. [18] A. Melianas and M. Kemerink, "Photogenerated Charge Transport in Organic Electronic Materials: Experiments Confirmed by Simulations," Advanced Materials. Vol. 31, pp. 1806004 (1-23), 2019. [DOI:10.1002/adma.201806004] [PMID]
19. [19] W. Ananda, "External quantum efficiency measurement of solar cell," International Symposium on Electrical and Computer Engineering, IEEE. Vol. 449, pp. 450-456, 2017. [DOI:10.1109/QIR.2017.8168528]
20. [20] E.L. Lim, C.C. Yap, M.A.M. Teridi, C.H. Teh, and M.H.H. Jumali, "A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells," Org. Electron, Vol. 36, pp. 12-28, 2016. [DOI:10.1016/j.orgel.2016.05.029]
21. [21] F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, "Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend," Sol. Energy Mater. Sol. Cells, Vol. 91, pp. 405-410, 2007. [DOI:10.1016/j.solmat.2006.10.019]
22. [22] P.P. Boix, G. Garcia-Belmonte, U. Muñecas, M. Neophytou, C. Waldauf, and R. Pacios, "Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements," Appl. Phys. Lett. Vol. 95, pp. 317- 321, 2009. [DOI:10.1063/1.3270105]
23. [23] F. Brioua, M. Remram, R. Nechache, and H. Bourouina, "Electrical and optical modeling of poly (3-hexylthiophene): [6, 6]-phenyl-C61 butyric acid methyl ester P3HT-PCBM bulk heterojunction solar cells," Appl. Phys. A, Vol. 123, pp.704 (1-10), 2017. [DOI:10.1007/s00339-017-1288-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb