Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 101-112 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Danesh Kaftroudi Z. Optimization of a New GaN-Based Blue Laser Diode with a Quadruple Asymmetric Waveguide for High Efficiency Performance. IJOP. 2021; 15 (1) :101-112
URL: http://ijop.ir/article-1-412-en.html
Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
Abstract:   (563 Views)
In this work, for the first time, the improved lasing performance of a blue GaN-based laser diode is demonstrated by the introduction and vertical optimization of a new quadruple asymmetric waveguide structure. In the new proposed waveguide structure, in the first step, p-waveguide and electron blocking layers have been omitted. Then a triple asymmetry was considered for the design of an AlGaNp-cladding layer inside the waveguide structure. The performances of the conventional and proposed laser structures were theoretically studied using the photonic integrated circuit simulator in 3D simulation software. The 3deminsional simulations of carrier transport, optical wave- guiding and self-heating were combined self-consistently in the software. A good agreement was achieved between simulations and experiments by careful choice of different material parameters in the physical models. The effects of the AlGaN p-cladding layer properties on the performance of the new quadruple asymmetric waveguide GaN-based laser were theoretically studied. Threshold current, output power, and operation voltage were compared for different composition of Al, doping, and thickness of the AlGaN p-cladding layer. According to the simulation results, the optimized values of Al composition, doping, and thickness of the AlGaN p-cladding layer obtained for high-power performance.
Full-Text [PDF 703 kb]   (186 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/05/31 | Revised: 2021/06/23 | Accepted: 2021/07/24 | Published: 2021/12/30

1. H.Y. Ryu, K.H. Ha, J.K. Son, H.S. Paek, Y.J. Sung, K.S. Kim, and O.H. Nam, "Comparison of Output Power of InGaN Laser Diodes for Different Al Compositions in The AlGaN n-Cladding Layer," J. Appl. Phys. Vol. 105, pp. 103102 (1-4), 2009. [DOI:10.1063/1.3126487]
2. B.S. Ryvkin, E.A. Avrutin, and J.T. Kostamovaara, "Narrow Versus Broad Asymmetric Waveguides for Single-Mode High-Power Laser Diodes," J. Appl. Phys. Vol. 114, pp. 013104 (1-4), 2013. [DOI:10.1063/1.4812571]
3. J. M.T. Huikari, E.A. Avrutin, B.S. Ryvkin, J.J. Nissinen, and J.T. Kostamovaara, "High-Energy Picosecond Pulse Generation by Gain Switching in Asymmetric Waveguide Structure Multiple Quantum Well Lasers," IEEE. J. Sel. Top. Quant. Vol. 21, pp. 1501206 (1-6), 2015. [DOI:10.1109/JSTQE.2015.2416342]
4. B.S. Ryvkin, E.A Avrutin, and J.T. Kostamovaara, "Optical Loss Suppression in Long-Wavelength Semiconductor Lasers at Elevated Temperatures by High Doping of The n-Waveguide," Semicond. Sci. Technol. Vol. 33, pp. 105010 (1-8), 2018. [DOI:10.1088/1361-6641/aadfb8]
5. X. Li, D. Zhao, D. Jiang, D. Jiang, P. Chen, Z. Liu, J. Zhu, M. Shi, D. Zhao, and W. Liu, "Suppression of Electron Leakage in 808 nm Laser Diodes with Asymmetric Waveguide Layer," J. Semicond. Vol. 37, pp. 014007 (1-4), 2016. [DOI:10.1088/1674-4926/37/1/014007]
6. F.I. Zubov, M.V. Maximov, M. Shernyakov, M. Yu, N.V. Kryzhanovskaya, E.S. Semenova, K. Yvind, L.V. Asryan, and A.E. Zhukov, "Suppression of Sublinearity of Light-Current Curve in 850 nm Quantum Well Laser with Asymmetric Barrier Layers," Electron. Lett. Vol. 51 pp. 1106-1108, 2015. [DOI:10.1049/el.2015.1392]
7. S.P. Abbasi and M.H. Mahdieh, "Active Layer Position Optimization in Asymmetric AlGaInAs/AlGaAs Semiconductor Laser Diode Structures," Opt. Commun. Vol. 402, pp. 624-629, 2017. [DOI:10.1016/j.optcom.2017.06.093]
8. G.Z. Racz, N. Bamiedakis, and R. Penty, "Mode-Selective Optical Sensing Using Asymmetric Waveguide Junctions," Sens. Actuators A. Phys. Vol. 233, pp. 91-97, 2015. [DOI:10.1016/j.sna.2015.04.009]
9. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, Springer, Germany, 2000. [DOI:10.1007/978-3-662-04156-7]
10. Gh. Alahyarizadeh, Z. Hassan, S.M. Thahab, F. K. Yam, and A.J. Ghazai, Performance characteristics of deep violet InGaN DQW laser diodes with InGaN/GaN superlattice waveguide layers," Optik, Int. J. Light Electron Opt. Vol. 125, pp. 341-344, 2014. [DOI:10.1016/j.ijleo.2013.06.059]
11. Gh. Alahyarizadeh, Z. Hassan, S.M. Thahab, F. K. Yam, and A.J. Ghazai, "Numerical study of performance characteristics of deep violet InGaN DQW laser diodes with AlInGaN quaternary multi quantum barrier electron blocking layer," Optik, Int. J. Light Electron Opt. Vol. 124, pp. 6765-6768, 2013. [DOI:10.1016/j.ijleo.2013.05.080]
12. Gh. Alahyarizadeh, M. Amirhoseiny, and Z. Hassan, "Effect of different EBL structures on deep violet InGaN laser diodes performance," Opt. Laser Technol. Vol. 76, pp. 106-112, 2016. [DOI:10.1016/j.optlastec.2015.08.007]
13. Gh. Alahyarizadeh and R. Rahmani, "Enhancement of performance characteristics of violet InGaN DQW laser diodes using InGaNGaN multilayer barriers," Optik, Int. J. Light Electron Opt.127, pp. 7635-7641, 2016. [DOI:10.1016/j.ijleo.2016.05.099]
14. Gh. Alahyarizadeh, Z. Hassan, S.M. Thahab, and F.K. Yam, "Improvement of the performance characteristics of deep violet InGaN multi-quantum-well laser diodes using step-graded electron blocking layers and a delta barrier," J. Appl. Phys. Vol. 113, pp. 123108 (1-8), 2013. [DOI:10.1063/1.4798388]
15. S. Nakamura, "InGaN-Based Blue Laser Diodes," IEEE. J. Sel. Top Quant. Vol. 3, pp. 712-718, 1997. [DOI:10.1109/2944.640626]
16. Available online on www.crosslight.com.
17. J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, Weinheim: Wiley-VCH, 2007. [DOI:10.1002/9783527610723]
18. D.P. Bour, M. Kneissl, G. Van de Walle, A.G. Evans, L.T. Romano, M. Teepe, R. Wood, T. Schmidt, S. Schoffberger, and N.M. Johnson "Design and Performance of Asymmetric Waveguide Nitride Laser Diodes," IEEE J. Quantum Electron. Vol. 36, pp. 184-191, 2000. [DOI:10.1109/3.823464]
19. T. Kaul, G. Erbert, A. Maaßdorf, S. Knigge, and P. Crump, "Suppressed Power Saturation Due to Optimized Optical Confinement in 9xx nm High-Power Diode Lasers That Use Extreme Double Asymmetric Vertical Designs," Semicond. Sci. Technol. Vol. 33 pp. 035005 (1-9), 2018. [DOI:10.1088/1361-6641/aaa221]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb