Sat, May 8, 2021
**[Archive]**

2- Department of Mathematics, Sahand University of Technology, Tabriz, Iran

In this paper, the interaction of Gaussian laser beam with under-dense plasma by taking the weakly relativistic ponderomotive nonlinearity has been investigated. For this purpose, the effect of the linear plasma electron temperature and upward exponential electron density profile on the laser propagation has been studied. The nonlinear second-order differential equation of the dimensionless beam-width parameter, *f*, on the distance of propagation, *h*, is derived by following WKB and paraxial approximation and solved numerically for the several initial electron temperatures. It is found that, the electron temperature ramp combined with upward ramp density profile would be caused stronger self-focusing where the beam width oscilates with less amplitude and smaller spot size. This could lead to further penetration of the laser beam inside the plasma by reducing the effects of diffraction.

Type of Study: Research |
Subject:
Special

Received: 2019/04/7 | Revised: 2019/08/6 | Accepted: 2019/08/23

Received: 2019/04/7 | Revised: 2019/08/6 | Accepted: 2019/08/23

1. E. Esarey, P. Sprangle, J. Krall, and A. Ting, "Overview of plasma-based accelerator concepts," IEEE Trans. Plasma Sci. Vol. 24, pp. 252-288, 1996. [DOI:10.1109/27.509991]

2. S. P. Regan, D. K. Bradley, A. V. Chirokikh, R. S. Craxton, D. D. Meyerhofer, W. Seka, R. w. Short, A. Simon, R. P. j. Town, and B. Yaakobi, "Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions," Phys. Plasmas. Vol. 6, pp. 2072-2080, 1999. [DOI:10.1063/1.873716]

3. P. Sprangle, E. Esarey, and J. Krall, "Laser driven electron acceleration in vacuum, gases, and plasmas," Phys. Plasmas. Vol. 3, pp. 2183-2190, 1996. [DOI:10.1063/1.871673]

4. S.V. Bulanov, I.Zh. Esirkepov, N.M. Naumova, and I.V. Sokolov, "High-order harmonics from an ultraintense laser pulse propagating inside a fiber," Phys. Rev. E. Vol. 67, pp. 016405 (1-4), 2003. [DOI:10.1103/PhysRevE.67.016405]

5. C. Deutsch, H. Furukawa, K. Mima, M. Murakami, and K. Nishihara, "Interaction Physics of the Fast Ignitor Concept," Phys. Rev. Lett. Vol. 77, pp. 2483-2486, 1996. [DOI:10.1103/PhysRevLett.77.2483]

6. P. Sprangle, E. Esarey, A. Ting, and G. Joyce, "Laser wakefield acceleration and relativistic optical guiding," Appl. Phys. Lett. Vol. 53, pp. 2146-2148, 1988. [DOI:10.1063/1.100300]

7. A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Law, "Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking," Phys. Rev. Lett. Vol. 95, pp. 025005 (1-4), 2005. [DOI:10.1103/PhysRevLett.95.025005]

8. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, and R.J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas, Vol. 1, pp. 1626-1634, 1994. [DOI:10.1063/1.870664]

9. P. Amendt, D.C. Eder, and S.C. Wilks, X-ray "lasing by optical-field-induced ionization," Phys. Rev. Lett. Vol. 66, pp. 2589-2592, 1991. [DOI:10.1103/PhysRevLett.66.2589]

10. X.R Hong, B.S. Xie, S. Zhang, H.C. Wu, A. Aimidula, X.Y. Zhao, and M.P. Liu, "High quality ion acceleration from a double-layer target dominated by the radiation pressure of a transversely Gaussian laser pulse," Phys.Plasmas. Vol. 17, pp. 103107, 2010. [DOI:10.1063/1.3503604]

11. G.A. Askar'yan, "Effects of Gradient of a Strong Electromagnetic Beam of Electrons and Atoms," Soviet Physics JETP, Vol. 15, pp. 1088-1090, 1962.

12. A.R. Niknam, M. Hashemzadeh, M.M. Montazeri, "Numerical investigation of the ponderomotive force effect in an underdense plasma with a linear density profile," IEEE Trans. Plasma Sci. Vol. 38, pp. 2390 - 2393, 2010. [DOI:10.1109/TPS.2010.2053388]

13. M.S. Sodha, L.A. Patel, and S.C Kaushik, "Self-focusing of a laser beam in an inhomogeneous plasma," Plasma Phys. Vol. 21, pp. 1-12, 1979. [DOI:10.1088/0032-1028/21/1/001]

14. F. Osman, R. Castillo, and H. Hora, "Relativistic and ponderomotive self-focusing at laser-plasma interaction," J. Plasma Phys. Vol. 61, pp. 263-273, 1999. [DOI:10.1017/S0022377898007417]

15. S. Zare, E. Yazdani, S. Rezaee, A. Anvari and R. Sadighi-Bonabi, "Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile," Phys. Rev, Vol. 18, pp. 04130191-7), 2015. [DOI:10.1103/PhysRevSTAB.18.041301]

16. D.N. Gupta, M.R. Islam, D.G. Jang, H. Suk, and D.A. Jaroszynski, "Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity," Phys. Plasmas. Vol. 20, pp. 123103 (1-5), 2013. [DOI:10.1063/1.4838195]

17. T.S. Gill, R. Kaur, and R. Mahajan, "Relativistic self-focusing and self-phase modulation of Cosh-Gaussian laser beam in magnetoplasma," Laser and Particle Beams. Vol. 29, pp. 183-191, 2011. [DOI:10.1017/S0263034611000152]

18. D.N. Gupta, M.S. Hur, I. Hwang, H. Suk, and A.K. Sharma, "plasma density ramp for relativistic self-focusing of an intense laser," J. Opt. Soc. Am. B. Vol. 24, pp.1155-1159, 2007. [DOI:10.1364/JOSAB.24.001155]

19. S. Kaur and A.K. Sharma, "Self-focusing of a laser pulse in plasma with periodic density ripple," Laser and Particle Beams. Vol. 27, pp. 193-199, 2009. [DOI:10.1017/S026303460900010X]

20. N. Kant, S. Saralch, and H. Singh, "Ponderomotive self-focusing of a short laser pulse under a plasma density ramp," Nukleonika, Vol. 56, pp. 149-153, 2011.

21. R. Sadighi-Bonabi, M. Habibi, and E. Yazdani, "Improving the relativistic self-focusing of intense laser beam in plasma using density transition," Phys. Plasmas. Vol. 16, pp. 083105 (1-4), 2009. [DOI:10.1063/1.3202694]

22. M. Habibi and F. Ghamari, "Non-stationary self-focusing of intense laser beam in plasma using ramp density profile," Physics of Plasmas, Vol. 18, pp. 103107 (1-5), 2011. [DOI:10.1063/1.3642620]

23. M. Aggarwal and S.V.N. Kant, "Propagation of cosh Gaussian laser beam in plasma with density ripple in relativistic-ponderomotive regime," Optik. Vol. 125, pp. 5081-5084, 2014. [DOI:10.1016/j.ijleo.2014.04.098]

24. V. Nanda and N. Kant, "strong self-focusing of ChG laser beam in collisionless magnetoplasma of ramped density profile," Phys. Plasmas. Vol. 21, pp. 072111 (1-11), 2014. [DOI:10.1063/1.4889862]

25. M. Habibi and F. Ghamari, "Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile," Phys. Plasmas. Vol. 21, pp. 052705 (1-6), 2014. [DOI:10.1063/1.4876751]

26. V. Nanda and N. Kant, "Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition," Phys. Plasmas. Vol. 21, pp. 042101 (1-6), 2014. [DOI:10.1063/1.4870080]

27. S. Kaur, M. Kaur, R. Kaur, and T.S. Gill, "Propagation characteristics of Hermite-cosh-Gaussian laser beam in a rippled density plasma," Laser and Particle Beams, Vol. 35, pp. 100-107, 2017. [DOI:10.1017/S026303461600080X]

28. H. Kumar, M. Aggarwal, and T.S. Gill, "self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile," journal of the optical society of America B, Vol. 35, pp. 1635- 1641, 2018. [DOI:10.1364/JOSAB.35.001635]

29. Y. Wang and Z. Zhou, "Propagation characters of Gaussian laser beams in collisionless plasma: Effect of plasma temperature," Phys. Plasmas. Vol. 18, pp. 043101 (1-6), 2011. [DOI:10.1063/1.3575629]

30. M. R. J. Milani, A. R. Niknam, and B. Bokaei, "Temperature effect on self-focusing and defocusing of Gaussian laser beam propagation through plasma in weakly relativistic regime," IEEE Trans. Plasma Sci. Vol. 42, pp. 742-747, 2014. [DOI:10.1109/TPS.2014.2300132]

31. Z. Zhou, Y. Wang, C. Yaun, and Y. Du, "Self-focusing and defocusing of Gaussian laser beams in plasmas with linear temperature ramp," Phys. Plasmas. Vol. 18, pp. 073107 (1-6), 2011. [DOI:10.1063/1.3609810]

32. H. Rezapour, H. Zahed, and P. Mokhtary, "Self-focusing and defocusing of cosh Gaussian laser beam in the presence of nonlinearity of ponderomotive force and temperature gradient," Chinese Journal of Physics. Vol. 56, pp. 1834-1844, 2018. [DOI:10.1016/j.cjph.2018.08.004]

33. M.S. Sodha, S.K. Mishra, and S.K. Agarwal, "Self-focusing and cross-focusing of gaussian electromagnetic beams in fully ionized collisional magnetoplasmas," Phys. Plasmas, Vol. 14, pp. 112302 (1-8), 2007. [DOI:10.1063/1.2801713]

34. H.K. Malik and A.K. Aria, "Microwave and plasma interaction in a rectangular waveguide: effect of ponderomotive force," J. Appl. Phys. Vol. 108, pp. 013109 (1-8), 2010. [DOI:10.1063/1.3452335]

35. B.K. Pandey, R.N. Agarwal, and V.K. Tripathi, "Tunneling of a relativistic laser pulse through an overdense plasma slab," Phys. Lett. A. Vol. 349, pp. 245-249, 2006. [DOI:10.1016/j.physleta.2005.08.072]

36. V.B. Pathaka and V.K. Tripathi, "Nonlinear electromagnetic plasma eigenmodes and their stability to stimulated Raman scattering," Phys.Plasmas. Vol. 13, pp. 082105, 2006. [DOI:10.1063/1.2234647]

37. A.V. Borovsky, A.L. Galkin, O.B. Shiryaev, and T. Auguste, Laser Physics at Relativistic Intensities, Springer-Verlag, Berlin, 2003. [DOI:10.1007/978-3-662-05242-6]

38. S.A. Akhmanov, A.P. Sukhorukov, and R.V. Khokhlov, "Self-focusing and diffraction of light in a Nonlinear medium," Sov. Phys. Usp. Vol. 10, pp. 609-636, 1968. [DOI:10.1070/PU1968v010n05ABEH005849]

39. M.S. Sodha and V.K. Tripathi, "Nonlinear penetration of an inhomogeneous laser beam in an overdense plasma," Phys. Rev. A. Vol. 16, pp. 2101-2104, 1977. [DOI:10.1103/PhysRevA.16.2101]

40. S.K. Agarwal and M.S. Sodha, "Steady-state self-focusing of Gaussian electromagnetic beams in an inhomogeneous nonlinear medium: Effect of absorption and initial curvature of the beam," Optik. Vol. 118, pp. 367-372, 2007. [DOI:10.1016/j.ijleo.2006.04.011]

41. S. Sen, B. Rathore, M. Varshney (Asthana), and D. Varshney, "Nonlinear propagation of intense electromagnetic beams with plasma density ramp function," J. Phys. Conf. Ser, Vol. 208, pp. 012088 (1-6), 2010. [DOI:10.1088/1742-6596/208/1/012088]