Volume 12, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 12, No 2, Summer-Fall 2018)                   IJOP 2018, 12(2): 99-108 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aeineh N, Sharifi N, Behjat A. Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells. IJOP. 2018; 12 (2) :99-108
URL: http://ijop.ir/article-1-297-en.html
1- Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran
2- Physics Department, University of Kashan, Kashan, Iran
3- Photonics Research Group, Yazd University, Yazd, Iran
Abstract:   (3794 Views)

To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells with Au@SiO2 nanoparticles deposited at the bottom of the mesoporous TiO2 layers demonstrated an improved photocurrent performance compared to the reference cells. This structure shows a short-circuit current density (JSC) of 20.7 mA/cm2 and open circuit voltage of 1081 mV. This enhancement may be attributed either to the interface surface engineering or plasmonic resonance of Au@SiO2 nanoparticles depends to the NPs size and position.  

Full-Text [PDF 635 kb]   (1330 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/12/18 | Revised: 2019/01/5 | Accepted: 2017/07/2 | Published: 2018/12/12

1. S. Aharon, B. El Cohen, and L. Etgar, "Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell," J. Phys. Chem. C, vol. 118, pp. 17160–17165, 2014. [DOI:10.1021/jp5023407]
2. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," J. Am. Chem. Soc., vol. 131, pp. 6050–6051, 2009. [DOI:10.1021/ja809598r]
3. "National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, Accessed 13.03," 2016.
4. M. K. Gangishetty, K. E. Lee, R. W. J. Scott, and T. L. Kelly, "Plasmonic Enhancement of Dye Sensitized Solar Cells in the Red-to-near-Infrared Region using Triangular Core Shell Ag@SiO2 Nanoparticles," ACS Appl. Mater. Interfaces, vol. 5, pp. 11044–11051, 2013. [DOI:10.1021/am403280r]
5. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, "Dual‐Function Scattering Layer of Submicrometer‐Sized Mesoporous TiO2 Beads for High‐Efficiency Dye‐Sensitized Solar Cells," Adv. Funct. Mater., vol. 20, pp. 1301–1305, 2010. [DOI:10.1002/adfm.200902218]
6. P. Balrajua, P. Suresha, M. Kumarb, M. S. Royb, and G. D. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," J. Photochem. Photobiol. A Chem., vol. 206, pp. 53–63, 2009. [DOI:10.1016/j.jphotochem.2009.05.014]
7. G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, "Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer," RSC Adv., vol. 7, pp. 12998–13002, 2017. [DOI:10.1039/C7RA00274B]
8. C. Zhang, Q. Luo, J. Shi, L. Yue, Z. Wang, X. Chen, and S. Huang, "Efficient Perovskite Solar Cells by Combination use of Au Nanoparticles and Insulating Metal Oxide," Nanoscale, vol. 9, pp. 2852–2864, 2017. [DOI:10.1039/C6NR09972F]
9. T. Ye, S. Ma, X. Jiang, L. Wei, C. Vijila, and S. Ramakrishna, "Performance Enhancement of Tri-Cation and Dual-Anion Mixed Perovskite Solar Cells by Au@SiO2 Nanoparticles," Adv. Funct. Mater, vol. 27, pp. 1606545 (1-9), 2017.
10. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, "repeat-Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.," Nano Lett., vol. 13, pp. 4505–10, 2013. [DOI:10.1021/nl4024287]
11. M. Saliba, W. Zhang, V. M. Burlakov, S. D. Stranks, Y. Sun, J. M. Ball, M. B. Johnston, A. Goriely, U. Wiesner, and H. J. Snaith, "Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells," Adv. Funct. Mater., vol. 25, pp. 5038–5046, 2015. [DOI:10.1002/adfm.201500669]
12. Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, "Plasmonic-Enhanced Perovskite Solar Cells Using Alloy Popcorn Nanoparticles," RSC Adv., vol. 5, pp. 11175–11179, 2015. [DOI:10.1039/C4RA16385K]
13. N. K. Pathak, N. Chander, V. K. Komarala, and R. P. Sharma, "Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles," Plasmonics, pp. 1–8, 2016.
14. E. S. Arinze, B. Qiu, G. Nyirjesy, and S. M. Thon, "Plasmonic Nanoparticle Enhancement of Solution- Processed Solar Cells: Practical Limits and Opportunities," ACS Photonics, vol. 3, pp. 158–173, 2016. [DOI:10.1021/acsphotonics.5b00428]
15. H. Nourolahi, A. Behjat, S. M. M. H. Zarch, and M. A. Bolorizadeh, "Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells," Sol. Energy, vol. 139, pp. 475–483, 2016. [DOI:10.1016/j.solener.2016.10.023]
16. N. Aeineh, E. M. Barea, A. Behjat, N. Sharifi, and I. Mora-Sero, "Inorganic Surface Engineering to Enhance Perovskite Solar Cell Efficiency," ACS Appl. Mater. Interfaces, vol. 9, pp. 13181–13187, 2017. [DOI:10.1021/acsami.7b01306]
17. B. V. Enustun and J. Turkevich, "Coagulation of Colloidal Gold," J. Am. Chem. Soc., vol. 85, pp. 3317–3328, 1963. [DOI:10.1021/ja00904a001]
18. L. M. Liz-marza, M. Giersig, and P. Mulvaney, "Synthesis of Nanosized Gold - Silica Core - Shell Particles," Langmuir, vol. 12, pp. 4329–4335, 1996. [DOI:10.1021/la9601871]
19. F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, "Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells," Nat. Commun., vol. 7, pp. 10379-10384, 2016. [DOI:10.1038/ncomms10379]
20. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, "Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide," J. Am. Chem. Soc., vol. 137, pp. 8696–8699, 2015. [DOI:10.1021/jacs.5b04930]
21. Todinova, J. Idígoras, M. Salado, S. Kazim, and J. A. Anta, "Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells," J. Phys. Chem. Lett., vol. 6, pp. 3923–3930, 2015. [DOI:10.1021/acs.jpclett.5b01696]
22. J. Bisquert and V. S. Vikhrenko, "Interpretation of the Time Constants Measured by Kinetic Techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells," J. Phys. Chem. B, vol. 108, pp. 2313–2322, 2004. [DOI:10.1021/jp035395y]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb