Volume 12, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 12, No 2, Summer-Fall 2018)                   IJOP 2018, 12(2): 99-108 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aeineh N, Sharifi N, Behjat A. Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells. IJOP. 2018; 12 (2) :99-108
URL: http://ijop.ir/article-1-297-en.html
Photonics Research Group, Yazd University, Yazd, Iran
Abstract:   (485 Views)

To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells with Au@SiO2 nanoparticles deposited at the bottom of the mesoporous TiO2 layers demonstrated an improved photocurrent performance compared to the reference cells. This structure shows a short-circuit current density (JSC) of 20.7 mA/cm2 and open circuit voltage of 1081 mV. This enhancement may be attributed either to the interface surface engineering or plasmonic resonance of Au@SiO2 nanoparticles depends to the NPs size and position.  

Full-Text [PDF 635 kb]   (102 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/12/18 | Revised: 2019/01/5 | Accepted: 2017/07/2 | Published: 2018/12/12

References
1. S. Aharon, B. El Cohen, and L. Etgar, "Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell," J. Phys. Chem. C, vol. 118, pp. 17160–17165, 2014. [DOI:10.1021/jp5023407]
2. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," J. Am. Chem. Soc., vol. 131, pp. 6050–6051, 2009. [DOI:10.1021/ja809598r]
3. "National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, Accessed 13.03," 2016.
4. M. K. Gangishetty, K. E. Lee, R. W. J. Scott, and T. L. Kelly, "Plasmonic Enhancement of Dye Sensitized Solar Cells in the Red-to-near-Infrared Region using Triangular Core Shell Ag@SiO2 Nanoparticles," ACS Appl. Mater. Interfaces, vol. 5, pp. 11044–11051, 2013. [DOI:10.1021/am403280r]
5. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, "Dual‐Function Scattering Layer of Submicrometer‐Sized Mesoporous TiO2 Beads for High‐Efficiency Dye‐Sensitized Solar Cells," Adv. Funct. Mater., vol. 20, pp. 1301–1305, 2010. [DOI:10.1002/adfm.200902218]
6. P. Balrajua, P. Suresha, M. Kumarb, M. S. Royb, and G. D. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," J. Photochem. Photobiol. A Chem., vol. 206, pp. 53–63, 2009. [DOI:10.1016/j.jphotochem.2009.05.014]
7. G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, "Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer," RSC Adv., vol. 7, pp. 12998–13002, 2017. [DOI:10.1039/C7RA00274B]
8. C. Zhang, Q. Luo, J. Shi, L. Yue, Z. Wang, X. Chen, and S. Huang, "Efficient Perovskite Solar Cells by Combination use of Au Nanoparticles and Insulating Metal Oxide," Nanoscale, vol. 9, pp. 2852–2864, 2017. [DOI:10.1039/C6NR09972F]
9. T. Ye, S. Ma, X. Jiang, L. Wei, C. Vijila, and S. Ramakrishna, "Performance Enhancement of Tri-Cation and Dual-Anion Mixed Perovskite Solar Cells by Au@SiO2 Nanoparticles," Adv. Funct. Mater, vol. 27, pp. 1606545 (1-9), 2017.
10. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, "repeat-Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.," Nano Lett., vol. 13, pp. 4505–10, 2013. [DOI:10.1021/nl4024287]
11. M. Saliba, W. Zhang, V. M. Burlakov, S. D. Stranks, Y. Sun, J. M. Ball, M. B. Johnston, A. Goriely, U. Wiesner, and H. J. Snaith, "Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells," Adv. Funct. Mater., vol. 25, pp. 5038–5046, 2015. [DOI:10.1002/adfm.201500669]
12. Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, "Plasmonic-Enhanced Perovskite Solar Cells Using Alloy Popcorn Nanoparticles," RSC Adv., vol. 5, pp. 11175–11179, 2015. [DOI:10.1039/C4RA16385K]
13. N. K. Pathak, N. Chander, V. K. Komarala, and R. P. Sharma, "Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles," Plasmonics, pp. 1–8, 2016.
14. E. S. Arinze, B. Qiu, G. Nyirjesy, and S. M. Thon, "Plasmonic Nanoparticle Enhancement of Solution- Processed Solar Cells: Practical Limits and Opportunities," ACS Photonics, vol. 3, pp. 158–173, 2016. [DOI:10.1021/acsphotonics.5b00428]
15. H. Nourolahi, A. Behjat, S. M. M. H. Zarch, and M. A. Bolorizadeh, "Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells," Sol. Energy, vol. 139, pp. 475–483, 2016. [DOI:10.1016/j.solener.2016.10.023]
16. N. Aeineh, E. M. Barea, A. Behjat, N. Sharifi, and I. Mora-Sero, "Inorganic Surface Engineering to Enhance Perovskite Solar Cell Efficiency," ACS Appl. Mater. Interfaces, vol. 9, pp. 13181–13187, 2017. [DOI:10.1021/acsami.7b01306]
17. B. V. Enustun and J. Turkevich, "Coagulation of Colloidal Gold," J. Am. Chem. Soc., vol. 85, pp. 3317–3328, 1963. [DOI:10.1021/ja00904a001]
18. L. M. Liz-marza, M. Giersig, and P. Mulvaney, "Synthesis of Nanosized Gold - Silica Core - Shell Particles," Langmuir, vol. 12, pp. 4329–4335, 1996. [DOI:10.1021/la9601871]
19. F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, "Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells," Nat. Commun., vol. 7, pp. 10379-10384, 2016. [DOI:10.1038/ncomms10379]
20. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, "Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide," J. Am. Chem. Soc., vol. 137, pp. 8696–8699, 2015. [DOI:10.1021/jacs.5b04930]
21. Todinova, J. Idígoras, M. Salado, S. Kazim, and J. A. Anta, "Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells," J. Phys. Chem. Lett., vol. 6, pp. 3923–3930, 2015. [DOI:10.1021/acs.jpclett.5b01696]
22. J. Bisquert and V. S. Vikhrenko, "Interpretation of the Time Constants Measured by Kinetic Techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells," J. Phys. Chem. B, vol. 108, pp. 2313–2322, 2004. [DOI:10.1021/jp035395y]

Add your comments about this article : Your username or Email:
CAPTCHA code

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb