Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 143-154 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tirandaz A. Transfer of Quantumness to Macroscopic States at Non-Equilibrium Condition. IJOP 2023; 17 (2) :143-154
URL: http://ijop.ir/article-1-553-en.html
Department of Physical Chemsitry, Faculty of Chemistry, Bu-Ali Sina University, Hamdan, Iran
Abstract:   (511 Views)
A quantum demon is a thought experiment in quantum mechanics that describes a hypothetical being that can manipulate individual quantum states, violating the second law of thermodynamics. It is shown how the interaction-free measurement of the observers on a macroscopic thermal field, can make a superposition of cat states even at high-temperature limits. The ability of Alice and Bob to reduce the entropy of the fields without disturbing it directly is surveyed. Then, they can act as quantum demons. Investigation of making cat states under non-equilibrium conditions and the change in the Heisenberg uncertainty relation has been surveyed. Finally, we have also introduced the temperature-dependent Bell’s inequality and studied the change in the limit of violation according to the non-equilibrium character of the dynamics.
Full-Text [PDF 845 kb]   (281 Downloads)    
Type of Study: Research | Subject: Quantum Optics, Quantum Communications, Quantom Computing
Received: 2024/02/20 | Revised: 2024/10/12 | Accepted: 2024/05/19 | Published: 2024/05/21

References
1. E. Schr¨odinger, "Die gegenwartige Situtation der Quantenmechanik," Naturwissenschaften, Vol. 23, pp. 807-812, 1935. [DOI:10.1007/BF01491891]
2. [J. von Neumann, Mathematical Foundations of Quantum, Princeton University Press, 1955.
3. A. Bassi, M. Dorato, and H. Ulbricht, "Collapse Models: A Theoretical, Experimental and Philosophical Review," Vol. 25, pp. 645(1-21), 2023. [DOI:10.3390/e25040645] [PMID] []
4. A. Bassi and G.C. Ghirardi, "A General Argument Against the Universal Validity of the Superposition Principle," Phys. Lett., Vol. 275, pp. 373-381, 2000. [DOI:10.1016/S0375-9601(00)00612-5]
5. A. Bassi, K. Lochan, S. Satin, P. Tejinder, and H. Ulbricht, "Models of wave-function collapse, underlying theories and experimental tests," Rev. Mod. Phys., Vol. 85, pp. 471-478, 2013. [DOI:10.1103/RevModPhys.85.471]
6. G.C. Ghirardi and R. Romano, "Collapse Models and Perceptual Processes," J. Phys. Conf. Ser., Vol. 504, pp. 012022(1-15), 2014. [DOI:10.1088/1742-6596/504/1/012022]
7. R. Penrose, "On gravity's role in the State Reduction," J. Gen. Relativ. Gravit., Vol. 28, pp. 581-600, 1996. [DOI:10.1007/BF02105068]
8. R. Penrose, "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction," Found. Phys., Vol. 44, pp. 557-575, 2014. [DOI:10.1007/s10701-013-9770-0]
9. M. Bahrami, A. Smirne, and A. Bassi, "Role of Gravity in the collapse of a wave function: A probe into the Diosi-Penrose Model," Phys. Rev. A, Vol. 90, pp. 062105(1 9), 2014. [DOI:10.1103/PhysRevA.90.062105]
10. G. Gasbarri, M. Toros, S. Donadi, and A. Bassi, "Gravity induced wave function Collapse," Phys. Rev. D, Vol. 96, pp. 104013(1-13), 2017. [DOI:10.1103/PhysRevD.96.104013]
11. M. Schlosshauer, "Decoherence, the measurement problem and interpretations of quantum mechanics," Rev. Mod. Phys., Vol. 76, pp. 1267-1285, 2005. [DOI:10.1103/RevModPhys.76.1267]
12. M. Schlosshauer, "Quantum Decoherence," Phys. Reports, Vol. 831, pp. 1-57, 2019. [DOI:10.1016/j.physrep.2019.10.001]
13. M. Schlosshauer, Decoherence and the Quantum to Classical Transition, Springer, 2007.
14. C. Kiefer, From Quantum to Classical: Essays in Honor of H.-Dieter Zeh, Springer, pp. 45-65, 2022. [DOI:10.1007/978-3-030-88781-0] [PMID]
15. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.O. Stamatescu, Decoherence and the Appearance of a Classical World in the Quantum theory, Springer, 2003. [DOI:10.1007/978-3-662-05328-7]
16. D. Bondar, R. Cabrera, V. Dimitry, and A. Herschel, "Wigner phase-space distribution as a Wave function," Phys. Rev. A, Vol. 88, pp. 052108(1-9), 2013. [DOI:10.1103/PhysRevA.88.052108]
17. A. Mann and M. Rezvan, "Coherent and Thermal Coherent States," J. Math. Phys., Vol. 30, pp. 2883-2895, 1989. [DOI:10.1063/1.528470]
18. J. Hyunseok and C.T. Ralph, "Transfer of non-classical properties from a microscopic superposition to a macroscopic thermal state in the high temperature limit," Phys. Rev. Lett., Vol. 97, pp. 100401(1-10), 2006. [DOI:10.1103/PhysRevLett.97.100401] [PMID]
19. W. Schleich, M. Prnigo, and F.L. Kien, "Nonclassical state from two pseudoclassical states," Phys. Rev. A, Vol. 44, pp. 2172-2136, 1991. [DOI:10.1103/PhysRevA.44.2172] [PMID]
20. A. Auffeves, P. Maioli, T. Munier, S. Gleyzes, G. Nogues, M. Brune, J.M. Raimond, and S. Haroche, "Entanglement of a Mesoscopic Field with an Atom induced by Photon Graininess in a Cavity," Phys. Rev. Lett., Vol. 91, pp. 230405 230409, 2003. [DOI:10.1103/PhysRevLett.91.230405] [PMID]
21. H. Takahashi, W. Kentaro, S. Suzuki, M. Takeoka, H. Kazuhiro, A. Furusawa, and A. Sasaki, "Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction," Phys. Rev. Lett., Vol. 101, pp. 233605(1-4), 2008. [DOI:10.1103/PhysRevLett.101.233605] [PMID]
22. K. Huang, H. Le Jeannic, J. Ruaudel, V.B. Verma, M.D. Shaw, F. Marsili, S.W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, "Optical Synthesis of Large Amplitude Squeezed Coherent," Phys. Rev. Lett., Vol. 115, pp. 023602(1 6), 2015. [DOI:10.1103/PhysRevLett.115.023602] [PMID]
23. T. Gerrits, S. Glancy, T.S. Clement, B. Calkins, A.E. Lita, A.J. Miller, A.L. Migdall, S.W. Nam, R.P. Mirin, and E. Knill, "Generation of Optical Coherent-State Superposition by number resolved photon subtraction from the Squeezed vacuum," Phys. Rev. A, Vol. 82, pp. 031802(1-4), 2010. [DOI:10.1103/PhysRevA.82.031802]
24. L.M. Johansen and A. Luis, "Non-Classicality in weak Measurements," Phys. Lett. A, Vol. 329, pp. 184-191, 2004.
25. H.D. Scammell and O.P. Sushkov, "Non-equilibrium quantum mechanics: a hot quantum soup of paramagnons," Phys. Rev. B, Vol. 95, pp. 024420(1-11), 2017. [DOI:10.1103/PhysRevB.95.024420]
26. M. Esposito, U. Harbola, and S. Mukamel, "Non-equilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems," Rev. Mod. Phys., Vol. 81, pp. 1665-1702, 2009. [DOI:10.1103/RevModPhys.81.1665]
27. G. Schaller, Open Quantum Systems Far from Equilibrium, Springer, 2014. [DOI:10.1007/978-3-319-03877-3]
28. A. Tirandaz, H.R. Naeij, and A. Shafiee, "Bringing Schrodinger's cat to life with Non-Equilibrium Respiration," J. Opt., Vol. 22, pp. 055702(1-9), 2020. [DOI:10.1088/2040-8986/ab8070]
29. N. Cottet, S. Jezouin, L. Bretheau, and B. Huard, "Observing a Quantum Maxwell demon at Work," Proc. Natio. Acad. Sci. (PNAS), Vol. 114, pp. 7561-7564, 2017. [DOI:10.1073/pnas.1704827114] [PMID] []
30. R. Scully, The Demon and the Quantum: From the Pythagorean Mystics to Maxwell's Demon and Quantum Mystery, Wiley-VCH Weinheim Germany, 2007.
31. F. Binder, L.A. Correa, C. Gogolin, J. Andreas, and G. Adesso, Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, Springer, 2019. [DOI:10.1007/978-3-319-99046-0]
32. O. Shenkar and M. Hemmo, "Maxwell's Demon in Quantum Mechanics," Entropy, Vol. 22, pp. 539-548, 2020. [DOI:10.3390/e22030269] [PMID] []
33. E. Hanggi and S. Wehner, "A Violation of the Uncertainty Principle implies violation of the Second law of thermodynamics," Nature Commun., Vol. 4, pp. 1670(1-5), 2013. [DOI:10.1038/ncomms2665] [PMID]
34. C.W. Lee and H. Jeong, "Quantification of Macroscopic Quantum Superpositions within Phase Space," Phys. Rev. Lett., Vol. 106, pp. 220401(1-4), 2011. [DOI:10.1103/PhysRevLett.106.220401] [PMID]
35. H. Hossein-Nejad, E.J. O'Reilly, and A. Olaya-Castro1, "Work, heat and entropy production in bipartite Quantum Systems," New J. Phys., Vol. 17, 075014(1-12), 2015. [DOI:10.1088/1367-2630/17/7/075014]
36. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, and R. Hanson, "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers," Nature, Vol. 526, pp. 682-686, 2015. [DOI:10.1038/nature15759] [PMID]
37. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroch, "Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement," Phys. Rev. Lett., Vol. 77, pp. 4887-4890, 1996. [DOI:10.1103/PhysRevLett.77.4887] [PMID]
38. M.S. Kim and J. Lee, "Test of quantum nonlocality for cavity fields," Phys. Rev. A, Vol. 61, pp. 042102(1-5), 2000. [DOI:10.1103/PhysRevA.61.042102]
39. H. Jeong, "Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation," Phys. Rev. A, Vol. 72, pp. 034305(1-4), 2005. [DOI:10.1103/PhysRevA.72.034305]
40. N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and B. Huard, "Observing a quantum Maxwell demon at work," Proc. Nation. Acad. Sci., Vol. 114, pp. 7561-7564, 2017. [DOI:10.1073/pnas.1704827114] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb