Mon, Jun 24, 2024
**[Archive]**

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Golestanifar M, Haddad M A, Hassan A N, Ostovari F. Intensity-Dependent Thermally Induced Nonlinear Optical Response of Graphene Oxide Derivative in Hydraulic Oil. IJOP 2023; 17 (2) :3-14

URL: http://ijop.ir/article-1-552-en.html

URL: http://ijop.ir/article-1-552-en.html

Moein Golestanifar ^{*} ^{1}, Mohammad Ali Haddad^{1} , Amir Namiq Hassan^{1} , Fatemeh Ostovari^{1}

The spatial self-phase modulation (SSPM) method was used to study the nonlinear optical responses of hydraulic oil containing dispersed nanosheets of reduced graphene oxide (rGO), hydroxylated rGO (rGO-OH), and carboxylated rGO (rGO-COOH). The intensity-dependent number of observed symmetric diffraction rings was analyzed to estimate the samples' thermally induced nonlinear refractive indexes and lead to estimated thermo-optical coefficients. Based on the observed symmetric diffraction rings, the nonlinear refraction coefficient and thermo-optical coefficient of samples were estimated to be in the order of magnitude of 10^{-6} cm^{2}/W and 10^{-2} K^{-1}, respectively. The results indicated that the presence of rGO derivatives significantly enhanced the optical nonlinearity of hydraulic oil.

Type of Study: Research |
Subject:
Nonlinear Optics

Received: 2024/02/18 | Revised: 2024/05/21 | Accepted: 2024/05/4 | Published: 2023/06/30

Received: 2024/02/18 | Revised: 2024/05/21 | Accepted: 2024/05/4 | Published: 2023/06/30

1. R.W. Terhune, P.D. Maker, and C.M. Savage, "Optical harmonic generation in calcite," Phys. Rev. Lett., Vol. 8, no. 10, pp. 404-406, 1962. [DOI:10.1103/PhysRevLett.8.404]

2. P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett., Vol. 7, no. 4, pp. 118-119, 1961. [DOI:10.1103/PhysRevLett.7.118]

3. G.C. Righini and L. Sirleto, Advances in nonlinear photonics, Elsevier, 2023.

4. Z. Chen and R. Morandotti, Nonlinear photonics and novel optical phenomena. Vol. 170, Springer, 2012. [DOI:10.1007/978-1-4614-3538-9]

5. W.R. Callen, B.G. Huth, and R.H. Pantell, "Optical patterns of thermally self-defocused," Appl. Phys. Lett., Vol. 11, no. 3, pp. 103-105, 1967. [DOI:10.1063/1.1755036]

6. X. Zhang, Z. Yuan, R. Yang, Y. He, Y. Qin, S. Xiao, and J. He, "A review on spatial self-phase modulation of two-dimensional materials," J. Cent. South Univ., Vol. 26, no. 9, pp. 2295-2306, 2019. [DOI:10.1007/s11771-019-4174-8]

7. D.F. Eaton, "Nonlinear optical materials," Science, Vol. 253, no. 5017, pp. 281-287, 1991. [DOI:10.1126/science.253.5017.281] [PMID]

8. C. Araujo, A.S.L. Gomes, and G. Boudebs, "Techniques for nonlinear optical characterization of materials: a review," Rep. Prog. Phys., Vol. 79, no. 3, pp. 036401-036401, 2016. [DOI:10.1088/0034-4885/79/3/036401] [PMID]

9. Y. Wang, C. Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, "Four-wave mixing microscopy of nanostructures," Adv. Opt. Photon., Vol. 3, no. 1, pp. 1-52, 2010. [DOI:10.1364/AOP.3.000001]

10. E. Hendry, P.J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, "Coherent nonlinear optical response of graphene," Phys. Rev. Lett., Vol. 105, no. 9, pp. 097401(1-4) 2010. [DOI:10.1103/PhysRevLett.105.097401] [PMID]

11. P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay, and R.G. Mcduff, "Single-beam Z-Scan: measurement techniques and analysis," J. Nonlinear Opt. Phys. Mate.r, Vol. 6, no. 3, pp. 251-293, 1997. [DOI:10.1142/S0218863597000204]

12. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, "Z-scan measurement of the nonlinear refractive index of graphene," Opt. Lett., Vol. 37, no. 11, pp. 1856-1856, 2012. [DOI:10.1364/OL.37.001856] [PMID]

13. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, "Purely coherent nonlinear optical response in solution dispersions of graphene sheets," Nano Lett., Vol. 11, no. 12, pp. 5159-5164, 2011. [DOI:10.1021/nl2023405] [PMID]

14. W. Ji, W. Chen, S. Lim, J. Lin, and Z. Guo, "Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions," Opt. Express, Vol. 14, no. 20, pp. 8958-8958, 2006. [DOI:10.1364/OE.14.008958] [PMID]

15. A.N. Hassan, M.A. Haddad, M. Golestanifar, and A. Behjat, "Non-linear optical response as a food authentication: investigation of non-linear Optical Properties of Edible Oils by spatial self-Phase modulation (SSPM) method," Food Anal. Methods, Vol. 16, no. 8, pp. 1392-1402, 2023. [DOI:10.1007/s12161-023-02514-4]

16. M.D. Zidan, A.W. Allaf, A. Allaham, and A. AL-Zier, "Effect of sample position on formation of spatial-self phase modulation ring patterns in poly(azaneylylidene-acylene)," Optik, Vol. 283, pp. 170939-170939, 2023. [DOI:10.1016/j.ijleo.2023.170939]

17. W. Gao, S. Wang, J. Yuan, L. Xiao, S. Jia, and L. Wang, "Identification of orbital angular momentum using atom-based spatial self-phase modulation," Opt. Express, Vol. 31, no. 9, pp. 13528-13528, 2023. [DOI:10.1364/OE.482116] [PMID]

18. T. Neupane, B. Tabibi, W.J. Kim, and F. Jaetae Seo, "Spatial self-phase modulation in graphene-oxide monolayer," Crystals, Vol. 13, no. 2, pp. 271-271, 2023. [DOI:10.3390/cryst13020271]

19. Y. Shi, Y. Gao, Y. Hu, Y. Xue, G. Rui, L. Ye, B. Gu, "Spatial self-phase modulation with tunable dynamic process and its applications in all-optical nonlinear photonic devices," Opt. Lasers Eng., Vol. 158, pp. 107168-107168, 2022. [DOI:10.1016/j.optlaseng.2022.107168]

20. L. Zhou, H. Fu, T. Lv, C. Wang, H. Gao, D. Li, L. Deng, and W. Xiong, "Nonlinear optical characterization of 2D materials," Nanomaterials, Vol. 10, no. 11, pp. 2263(1-38), 2020. [DOI:10.3390/nano10112263] [PMID] []

21. T. Neupane, B. Tabibi, and F.J. Seo, "Spatial self-phase modulation in WS2 and MoS2 atomic layers," Opt. Mater. Express, Vol. 10, no. 4, pp. 831-831, 2020. [DOI:10.1364/OME.380103]

22. E.A. Aboob and F.A. Umran, "Experimental study of spatial self-phase modulation (SSPM) based on laser beam and hybrid functionalized carbon nanotubes/silver nanoparticles (F-Mwcnts/Ag-Nps) acetone suspensions," Iraqi J. Laser, Vol. 18, no. 1, pp. 1-6, 2019.

23. L. Ma, "Study on changes in spatial self-phase modulation pattern of graphene dispersion," J. Phys. Conf. Ser., Vol. 1838, no. 1, pp. 012021-012025, 2021. [DOI:10.1088/1742-6596/1838/1/012021]

24. L. Ma, "Effect of convection on the distortion of spatial self-phase modulation pattern in graphene dispersions." J. Phys. Conf. Ser., Vol. 1838, no. 1, pp. 012002-012008, 2021. [DOI:10.1088/1742-6596/1838/1/012002]

25. Y. Shan, J. Tang, L. Wu, S. Lu, X. Dai, and Y. Xiang, "Spatial self-phase modulation and all-optical switching of graphene oxide dispersions," J. Alloys Compd., Vol. 771, pp. 900-904, 2019. [DOI:10.1016/j.jallcom.2018.08.330]

26. A.R. Sadrolhosseini, S. Abdul Rashid, H. Shojanazeri, M. Noor, and H. Nezakati, "Spatial self-phase modulation patterns in graphene oxide and graphene oxide with silver and gold nanoparticles," Opt. Quantum Electron., Vol. 48, no. 4, pp. 222-234, 2016. [DOI:10.1007/s11082-016-0485-2]

27. K.R. Vijesh, P.N. Musfir, T. Thomas, Manu Vaishakh, V.P.N. Nampoori, and S. Thomas, "Enhanced nonlinear optical properties of solution dispersed carbon dots decorated graphene oxide with varying viscosity," Opt. Laser Technol., Vol. 121, pp. 105776-105776, 2020. [DOI:10.1016/j.optlastec.2019.105776]

28. Y. Yuan, B. Zhu, F. Cao, J. Wu, Y. Hao, and Y. Gu, "Enhanced nonlinear optical properties of the Cu2Se/RGO composites," Results Phys., Vol. 27, pp. 104568(1-7), 2021. [DOI:10.1016/j.rinp.2021.104568]

29. M. Yue, J. Si, L. Yan, Y. Yu, and X. Hou, "Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles," Opt. Mater. Express, Vol. 8, no. 3, pp. 698-698, 2018. [DOI:10.1364/OME.8.000698]

30. Y. Yuan, F. Cao, P. Li, J. Wu, B. Zhu, and Y. Gu, "Ultrafast charge transfer enhanced nonlinear optical properties of CH3NH3PbBr3 perovskite quantum dots grown from graphene," Nanophoton., Vol. 11, no. 13, pp. 3177-3188, 2022. [DOI:10.1515/nanoph-2022-0251]

31. D. Berman, A. Erdemir, and A.V. Sumant, "Graphene: a new emerging lubricant," Materials Today, Vol. 17, no. 1, pp. 31-42, 2014. [DOI:10.1016/j.mattod.2013.12.003]

32. J. Zhao, J. Mao, Y. Li, Y. He, and J. Luo, "Friction-induced nano-structural evolution of graphene as a lubrication additive," Appl. Surf. Sci, Vol. 434, pp. 21-27, 2018. [DOI:10.1016/j.apsusc.2017.10.119]

33. S. Zilabi, M. Shareei, A. Bozorgian, A. Ahmadpour and E. Esmaeil, "A review on nanoparticle application as an additive in lubricants," Adv. J. Chem. Sect. B. Nat. Prod. Med. Chem., Vol. 4, pp. 209-221, 2022.

34. H.A. Naser, A. I. Mahmood, and S.K. Fandi, "Measurements of linear and nonlinear optical properties for iraqi heavy crude oil samples," Iraqi J. Science, Vol. 62, pp. 845-851, 2021. [DOI:10.24996/ijs.2021.62.3.15]

35. C.A. Emshary, D.H. Hashim, H.A. Sultan, and Q.M.A. Hassan, "Diffraction patterns and nonlinear optical properties of Henna oil," J. Pure Sci. Sci. Educ., Vol. 7, no. 4, pp. 90-103, 2017.

36. A. Garcia, S. Valbuena, R. Sarmiento, and F. Racedo, "Measurement of the nonlinear optical properties of olive oil using Z-Scan," Opt. Pura Appl., Vol. 48, no. 1, pp. 55-61, 2015. [DOI:10.7149/OPA.48.1.55]

37. J.S. Díaz-Tovar, S. Valbuena-Duarte, and F. Racedo-Niebles, "Study of non-linear optical properties in automobile lubricating oil via Z-Scan technique," Rev. Fac. Ingenieria., no. 86, pp. 27-31, 2018. [DOI:10.17533/udea.redin.n86a04]

38. R.F. Souza, Márcio A.R.C. Alencar, M.R. Meneghetti, and J.M. Hickmann, "Large nonlocal nonlinear optical response of castor oil," Opt. Mater., Vol. 31, no. 11, pp. 1591-1594, 2009. [DOI:10.1016/j.optmat.2009.03.006]

39. R.F. Souza, M.A.R. C. Alencar, M.R. Meneghetti, and J.M. Hickmann, "Nonlinear optical properties of castor oil." in Proc. advanced materials and structures, XXIX ENFMC, Annals of Optics, 2006.

40. M.A.R.C. Alencar, C.M. Nascimento, S. Chávez-Cerda, M.G.A. da Silva, M.R. Meneghetti, J.M. Hickmann, "Large spatial self-phase modulation in castor oil enhanced by gold nanoparticles," in Proc. of SPIE, 2006, [DOI:10.1117/12.647000]

41. M. Izdebski, R. Ledzion, and P. Górski, "Measurement of quadratic electrogyration effect in castor oil," Opt. Commun., Vol. 346, pp. 80-87, 2015. [DOI:10.1016/j.optcom.2015.02.013]

42. D. S. Bolley, "Composition of castor oil by optical activity," J. Am. Oil. Chem. Soc., Vol. 30, no. 10, pp. 396-398, 1953. [DOI:10.1007/BF02639356]

43. L. Vicari, "Optical nonlinearity in a film of water in oil microemulsion," Opt. Mater., Vol. 18, no. 1, pp. 155-157, 2001. [DOI:10.1016/S0925-3467(01)00155-0]

44. L. Rosario, "Dynamics of optical nonlinearity in water-in-oil microemulsion," Jpn. J. Appl. Phys., Vol. 40, no. 2R, pp. 662-662, 2001. [DOI:10.1143/JJAP.40.662]

45. L. Vicari, "Laser beam self-phase modulation by a film of water-in-oil microemulsion," EPL., Vol. 49, no. 5, pp. 564-568, 2000. [DOI:10.1209/epl/i2000-00187-x]

46. L. Vicari, "Optical nonlinearity of water in oil microemulsion near percolation," J. Appl. Phys., Vol. 88, no. 1, pp. 7-10, 2000. [DOI:10.1063/1.373616]

47. S.A. Sangsefedi, S. Sharifi, H.R. M. Rezaion, and A. Azarpour, "Fluorescence and nonlinear optical properties of alizarin red S in solvents and droplet," J. Fluoresc., Vol. 28, no. 3, pp. 815-825, 2018. [DOI:10.1007/s10895-018-2245-0] [PMID]

48. F.A. Zarif, S. Sharifi, G.S. Shurshalova, I. Rakhmatullin, V. Klochkov, A. Aganov, M. Behrouz, M.R. Sharifmoghadam, S. Mahdizadeh, and M.K. Nezhad "Effect of micelles and reverse micelles on nonlinear optical properties of potassium dichromate and Staphylococcus aureus treatment," Opt. Mater., Vol. 106, pp. 109925-109925, 2020. [DOI:10.1016/j.optmat.2020.109925]

49. S. Sharifi, S.G. Salavatovna, A. Azarpour, F. Rakhshanizadeh, G. Zohuri, and M.R. Sharifmoghadam, "Optical properties of methyl orange-doped droplet and photodynamic therapy of staphylococcus aureus," J. Fluoresc., Vol. 29, no. 6, pp. 1331-1341, 2019. [DOI:10.1007/s10895-019-02459-0] [PMID]

50. M. Pourtabrizi, N. Shahtahmassebi, A. Kompany, and S. Sharifi, "Enhancement of linear and non-linear optical properties of erythrosin b by nano-droplet," Opt. Quantum Electron., Vol. 50, no. 13, pp. 1-15, 2018. [DOI:10.1007/s11082-017-1277-z]

51. R. Barbosa-Silva, M.L. Silva-Neto, D. Bain, L. Modesto-Costa, T. Andrade-Filho, V. Manzoni, A. Patra, and C.B. de Araújo, "Observation and analysis of incoherent second-harmonic generation in gold nanoclusters with six atoms," J. Phys. Chem. A, Vol. 124, no. 28, pp. 15440-15447, 2020. [DOI:10.1021/acs.jpcc.0c03397]

52. J.W. You, S.R. Bongu, Q. Bao, and N.C. Panoiu, "Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects," Nanophotonics, Vol. 8, no. 1, pp. 63-97, 2018. [DOI:10.1515/nanoph-2018-0106]

53. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, "Two-dimensional atomic crystals," in Proc. of the National Academy of Sciences, Vol. 102, no. 30, pp. 10451-10453, 2005. [DOI:10.1073/pnas.0502848102] [PMID] []

54. J.E.Q. Bautista, C.L.A.V. Campos, M.L. da Silva-Neto, C.B. de Araújo, A.M. Jawaid, Robert Busch, R.A. Vaia, and A.S.L. Gomes, "Intensity-dependent thermally induced nonlinear optical response of two-dimensional layered transition-metal dichalcogenides in suspension," ACS Photon, Vol. 10, no. 2, pp. 484-492, 2023. [DOI:10.1021/acsphotonics.2c01598]

55. R.W. Boyd, Nonlinear optics, Academic Press, 2019.

56. Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, "Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials," Nanoscale, Vol. 9, no. 10, pp. 3547-3554, 2017. [DOI:10.1039/C6NR08487G] [PMID]

57. J.E.Q. Bautista, M.L. da Silva-Neto, C.L.A.V. Campos, M. Maldonado, C.B. de Araújo, and A.S.L. Gomes, "Thermal and non-thermal intensity dependent optical nonlinearities in ethanol at 800 nm, 1480 nm, and 1560 nm," J. Opt. Soc. Am. B, Vol. 38, no. 4, pp. 1104-1104, 2021. [DOI:10.1364/JOSAB.418635]

58. M.D. Zidan, M.M. Al-Ktaifani, M.S. EL-Daher, A. Allahham, and A. Ghanem, "Diffraction ring patterns and nonlinear measurements of the Tris(2′,2-bipyridyl) iron(II) tetrafluoroborate," Opt. Laser Technol., Vol. 131, pp. 106449-106449, 2020. [DOI:10.1016/j.optlastec.2020.106449]

59. K. Ogusu, Y. Kohtani, and H. Shao, "Laser-induced diffraction rings from an absorbing solution," Opt. Rev., Vol. 3, no. 4, pp. 232-234, 1996. [DOI:10.1007/s10043-996-0232-1]

60. "Thermal Conductivities for some common liquids," Engineeringtoolbox.com, 2019. https://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html.

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |