Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 133-140 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ranjbar S, Azarian A. Analyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation. IJOP. 2021; 15 (2) :133-140
URL: http://ijop.ir/article-1-462-en.html
1- Physics Department, Qom University, Qom, Iran.
Abstract:   (8466 Views)
In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, wavelength and full width at half maximum (FWHM) of extinction cross-section peaks (from plasmon resonances) based on the size of nanoparticles and the environment dielectric constant were surveyed. The results showed that only two peak modes, named dipole peak and quadrupole peak, exist in this spectrum, such as spherical particles.
Full-Text [PDF 493 kb]   (7387 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/06/27 | Revised: 2021/10/23 | Accepted: 2022/01/2 | Published: 2022/01/29

References
1. O.V. Salata, "Applications of nanoparticles in biology and medicine," J. Nanobiotechnol. Vol. 2, no. 1, pp. 1-6, 2004. [DOI:10.1186/1477-3155-2-3] [PMID] [PMCID]
2. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Accounts Chem. Res. Vol. 41, no. 12, pp. 1721-1730, 2008. [DOI:10.1021/ar800035u] [PMID]
3. M. Homberger and U. Simon, "On the application potential of gold nanoparticles in nanoelectronics and biomedicine," Philos. Trans. R. Soc. Math. Phys. Eng. Sci. Vol. 368, no. 1915, pp. 1405-1453, 2010. [DOI:10.1098/rsta.2009.0275] [PMID]
4. J. Conde, J. Rosa, J.C. Lima, and P.V. Baptista, "Nanophotonics for molecular diagnostics and therapy applications," Int. J. Photoenergy, Vol. 2012, 2012. [DOI:10.1155/2012/619530]
5. M.C. Daniel and D. Astruc, "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chem. Rev. vol. 104, no. 1, pp. 293-346, 2004. [DOI:10.1021/cr030698+] [PMID]
6. M.A. Yurkin and A.G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum Spectrosc. Radiat. Transf. Vol. 106, no. 1, pp. 558-589, 2007. [DOI:10.1016/j.jqsrt.2007.01.034]
7. M.A. Yurkin and A.G. Hoekstra, "The discrete-dipole-approximation code ADDA: capabilities and known limitations," J. Quantum Spectrosc. Radiat. Transf. Vol. 112, no. 13, pp. 2234-2247, 2011. [DOI:10.1016/j.jqsrt.2011.01.031]
8. P.J. Flatau and B.T. Draine, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, pp.1491-1499, 1994. [DOI:10.1364/JOSAA.11.001491]
9. B.T. Draine and P.J. Flatau, User Guide for the discrete dipole approximation code DDSCAT 7.3. , 2012.
10. V.L. Loke, M.P. Mengüc, and T.A. Nieminen, "Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB," J. Quantum Spectrosc. Radiat. Transf. Vol. 112, no. 11, pp. 1711-1725, 2011. [DOI:10.1016/j.jqsrt.2011.03.012]
11. R. Schmehl, B.M. Nebeker, and E.D. Hirleman, "Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique," J. Opt. Soc. Am. A, Vol. 14, no. 11, pp. 3026-3036, 1997. [DOI:10.1364/JOSAA.14.003026]
12. I. Ayrancı, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quantum Spectrosc. Radiat. Transf. Vol. 103, no. 1, pp. 83-101, 2007. [DOI:10.1016/j.jqsrt.2006.06.006]
13. A.L. González and C. Noguez, "Influence of morphology on the optical properties of metal nanoparticles," J. Comput. Theor. Nanosci. Vol. 4, no. 2, pp. 231-238, 2007. [DOI:10.1166/jctn.2007.2309]
14. C.F. Bohren and D.R. Huffman, Absorption and scattering by small particles, John Wiley, pp. 82-129, 1998. [DOI:10.1002/9783527618156]
15. M. Quinten, Optical properties of nanoparticle systems: Mie and beyond. John Wiley & Sons, 2010. [DOI:10.1002/9783527633135]
16. A. Moroz, "Depolarization field of spheroidal particles," J. Opt. Soc. Am. B, Vol. 26, no. 3, pp. 517-527, 2009. [DOI:10.1364/JOSAB.26.000517]
17. A. Wokaun, J.P. Gordon, and P.F. Liao, "Radiation damping in surface-enhanced Raman scattering," Phys. Rev. Lett. Vol. 48, no. 14, pp. 957-960, 1982. [DOI:10.1103/PhysRevLett.48.957]
18. M.P. Marder, Condensed matter physics. John Wiley & Sons, 2010. [DOI:10.1002/9780470949955]
19. C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, "Plasmon resonances in large noble-metal clusters," New J. Phys. Vol. 4, no. 1, pp. 93 (1-8), 2002. [DOI:10.1088/1367-2630/4/1/393]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb