XML Print


1- Photonics Engineering Group, Department of Physics, Amirkabir University of Technology, Tehran, Iran
2- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
Abstract:   (98 Views)
In this paper, an analytical model is presented to compare the monolithic end-pumped and distributed side-pumped arrangements in the master oscillator power amplifier (MOPA) of Q-switched (QSW) double-clad (DC) ytterbium (Yb)-doped fiber system. First, the time-dependent rate equations are solved numerically by the finite difference method and the output pulse characteristics are obtained. For more amplifying, the laser pulse is injected into the amplifier and the gain and saturation coefficients are obtained by using the best fitting between the outcoming data from solving rate equations and the transient amplification relation, based on the least squares method (LSM). Finally, the dependence of pump power and dopant concentration on the cavity amplifying parameters are investigated.
Full-Text [PDF 971 kb]   (59 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/10/23 | Revised: 2020/12/13 | Accepted: 2020/12/23 | Published: 2020/12/25

References
1. P. Parvin, M. Ilchi-Ghazaani, A. Bananej, and Z. Lali-Dastjerdi, "Small signal gain and saturation intensity of a Yb:Silica fiber MOPA system," Opt. Laser Technol. Vol. 41 pp. 885-891, 2009. [DOI:10.1016/j.optlastec.2009.02.006]
2. S. Mohammadian, P. Parvin, M. Ilchi-Ghazaani, R. Poozesh, and K. Hejaz, "Measurement of gain and saturation parameters of a single-mode Yb: silica fiber amplifier," Opt. Fib. Technol. Vol. 19, pp. 446-455, 2013. [DOI:10.1016/j.yofte.2013.05.016]
3. J. Yoon-Chan, A. J. Boyland, J.K. Sahu, S.Chung, J. Nilsson, and D.N. Payne, "Multi-kilowatt single-mode ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea, Vol. 13, pp. 416-422, 2009. [DOI:10.3807/JOSK.2009.13.4.416]
4. M.J. Digonnet, Rare-earth-doped fiber lasers and amplifiers, revised and expanded, CRC Press, 2001. [DOI:10.1201/9780203904657]
5. Z. Hanwei, X. Wang, P. Zhou, Z. Gong, and X.Xu, "6 mJ, high-average-power, all-fiberized Q-switched fiber master oscillator power amplifier with low repetition rate," Appl. Opt.. Vol. 51, pp. 6933-6936, 2012. [DOI:10.1364/AO.51.006933]
6. W. Hanshuo, J. Song, J. Wu, J. Xu, H. Xiao, J. Leng, and P. Zhou, "High-power highly stable passively Q-switched fiber laser based on monolayer graphene," Laser Phys. Lett. Vol. 15, pp. 035102 (1-9), 2018. [DOI:10.1088/1612-202X/aa9638]
7. B. Jaleh, P. Parvin, N. Sheikh, F. Ziaie, M. Haghshenas, and L. Bozorg, "Evaluation of physico-chemical properties of electron beam-irradiated polycarbonate film," Radiat. Phys. Chem. vol. 76, pp. 1715-1719, 2007. [DOI:10.1016/j.radphyschem.2007.03.008]
8. S. Miclos, Savastru, D. Savastru, R. and Lancranjan, Numerical Simulation of Fiber Laser Operated in Passively Q-Switched and Mode-Locked Regimes. Fiber Laser, p. 275, 2016. [DOI:10.5772/61882]
9. Y. Wang, A. Martinez-Rios, and H. Po, "Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking," Opt. Commun. Vol. 224, pp. 113-123, 2003. [DOI:10.1016/S0030-4018(03)01722-X]
10. T. Challa, "Optimization of MOPA for YD-DC Fiber Laser," Journal of Optoelectron. Eng. Vol. 2, pp. 29-32, 2014.
11. J.A. Alvarez-Chavez, H.L. Of ferhaus, J. Nilsson, P.W. Turner, W.A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett.. Vol. 25, pp. 37-39, 2000. [DOI:10.1364/OL.25.000037]
12. R. Čiegis, A. Dement'ev, and I. Laukaitytė, "A numerical algorithm for simulation of the Q-switched fiber laser using the travelling wave model," Lith. Math. J. Vol. 48, pp. 270-281, 2008. [DOI:10.1007/s10986-008-9011-y]
13. N. Shafii Mousavi, P. Parvin, and M. Ilchi-Ghazaani, "Modeling of a Q-switched master oscillator power amplifier fiber laser and gain saturation properties," Laser Phys. Vol. 30, pp. 085101 (1-13), 2020. [DOI:10.1088/1555-6611/ab8cc9]
14. Y.E. Jeong, J.K. Sahu, D.A. Payne and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express. Vol. 12, pp. 6088-6092, 2004. [DOI:10.1364/OPEX.12.006088]
15. L. Jin, Y. Zou, X. Ma, Z.Yang, Z. Xue, Y. Jin, L. Xu, Q. Sui, W. Zhao, and Z. Zhang, "Simulation and optimization of pump technology on high-power fiber laser," International Conference on Optoelectronics and Microelectronics. IEEE, Vol. 6, pp. 77-80, 2012. [DOI:10.1109/ICoOM.2012.6316220]
16. H.G. Treusch, K. Du, M. Baumann, V. Sturm, B. Ehlers, and Loosen, "Fiber-coupling technique for high-power diode laser arrays. in Laser Resonators," International Society for Opt. Photon. Vol. 3267, pp. 0277 (1-9), 1998. [DOI:10.1117/12.308097]
17. L. Goldberg, B. Cole, and E. Snitzer, "V-groove side-pumped 1.5 µm fibre amplifier," Electron. Lett. Vol. 33, pp. 2127-2129, 1997. [DOI:10.1049/el:19971471]
18. D. Ripin and L. Goldberg, "High efficiency side-coupling of light into optical fibres using imbedded v-grooves," Electron. Lett. Vol. 31, pp. 2204-2205, 1995. [DOI:10.1049/el:19951429]
19. Y. Wang and C.-Q. Xu, "Modeling and optimization of Q-switched double-clad fiber lasers," Appl. Opt. Vol. 45, pp. 2058-2071, 2006. [DOI:10.1364/AO.45.002058]
20. Y. Huo, R.T. Brown, G.G. King, and P.K. Cheo, "Kinetic modeling of Q-switched high-power ytterbium-doped fiber lasers," Appl. Opt. Vol. 43, pp. 1404-1411, 2004. [DOI:10.1364/AO.43.001404]
21. L.M. Frantz and J.S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. Vol. 34, pp. 2346-2349, 1963. [DOI:10.1063/1.1702744]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2021 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb