Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 165-174 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adibnia E, Ghadrdan M, Mansouri-Birjandi M A. Prediction of Fiber Bragg Gratings Characteristics from Its Design Parameters Using Deep Learning. IJOP 2023; 17 (2) :165-174
URL: http://ijop.ir/article-1-558-en.html
1- Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan (USB), Zahedan, Iran
Abstract:   (182 Views)
This research addresses the complexities and inefficiencies encountered in fabricating fiber Bragg gratings (FBGs), which are crucial for applications in optical communications, lasers, and sensors. The core challenge lies in the intricate relationship between fabrication parameters and the FBG's physical properties, making optimization time-consuming. To circumvent these obstacles, the study introduces an artificial intelligence-based approach, utilizing a neural network to predict FBG physical parameters from transmission spectra, thereby streamlining the fabrication process. The neural network demonstrated exceptional predictive accuracy, significantly reducing the parameter prediction time from days to seconds. This advancement offers a promising avenue for enhancing the efficiency and precision of FBG sensor design and fabrication. The research not only showcases the potential of artificial intelligence in revolutionizing FBG production but also contributes to the broader field of optical technology by facilitating more rapid and informed design decisions, ultimately paving the way for developing more sophisticated and sensitive FBG-based applications.
Full-Text [PDF 722 kb]   (101 Downloads)    
Type of Study: Research | Subject: Optical Fiber, Fiber Sensors, and Optical Communications
Received: 2024/03/21 | Revised: 2024/10/12 | Accepted: 2024/06/25 | Published: 2024/06/27

References
1. L.A. Ngiejungbwen, H. Hamdaoui, and M.-Y. Chen, "Polymer optical fiber and fiber Bragg grating sensors for biomedical engineering Applications: A comprehensive review," Opt. Laser Technol., Vol. 170, pp., 110187(1-40), 2024. [DOI:10.1016/j.optlastec.2023.110187]
2. H. Saghaei, P. Elyasi, and B.J. Shastri, "Sinusoidal and rectangular Bragg grating filters: Design, fabrication, and comparative analysis," J. Appl. Phys., Vol. 132, pp., 064501(1-11), 2022. [DOI:10.1063/5.0098923]
3. Q. Zhang, X. Han, X. Fang, M. Liu, K. Ge, H. Jiang, W. Dong, and X. Zhang, "A single passband microwave photonic filter with enhanced flat top and shape factor based on tunable optical bandpass filter and fiber Bragg gratings," Opt. Laser Technol., Vol. 168, pp. 109838(1-30), 2024. [DOI:10.1016/j.optlastec.2023.109838]
4. Z. Zhang, F. Liu, X. Guo, T. Chen, L. Han, and W. Zhang, "Optimization of Dual-Wavelength linear cavity Erbium-Doped fiber laser based on pairs of fiber Bragg gratings," Opt. Fiber Technol., Vol. 83, pp. 103675(1-6), 2024. [DOI:10.1016/j.yofte.2024.103675]
5. B. Jafari and E. Gholizadeh, "Multifunctional graphene-based optoelectronic structure based on a Fabry-Perot cavity enhanced by a metallic nanoantenna," Appl. Opt., Vol. 61, pp. 10658 10668, 2022. [DOI:10.1364/AO.471989] [PMID]
6. C. Li, X. Tong, W. Huang, Y. Wang, F. Zeng, L. Chen, X. Shi, and C. Zeng, "Development of a Fast Response, High Accuracy, and Miniaturized Fiber Bragg Grating (FBG) sensor for Fluid Temperature measurement," IEEE Sens. J., Vol. 24, pp. 8746-8753, 2024. [DOI:10.1109/JSEN.2024.3358386]
7. J. He, Z. Li, X. Xu, Q. Tan, X. Weng, L. Liu, J. Qu, C. Liao, and Y. Wang, "High-temperature strain sensor based on sapphire fiber Bragg grating," Opt. Lett., Vol. 49, pp. 446-449, 2024. [DOI:10.1364/OL.509397] [PMID]
8. B. Xu, G. Chen, X. Xu, S. Liu, C. Liao, X. Weng, L. Liu, J. Qu, Y. Wang, and J. He, "Highly birefringent side-hole fiber Bragg grating for high-temperature pressure sensing," Opt. Lett., Vol. 49, pp. 1233-1236, 2024. [DOI:10.1364/OL.509522] [PMID]
9. B. Jafari, E. Gholizadeh, B. Jafari, M. Zhoulideh, E. Adibnia, M. Ghafariasl, M. Noori, and S. Golmohammadi, "Highly sensitive label-free biosensor: graphene/CaF2 multilayer for gas, cancer, virus, and diabetes detection with enhanced quality factor and figure of merit," Sci. Rep., Vol. 13, pp. 16184(1-15), 2023. [DOI:10.1038/s41598-023-43480-5] [PMID] []
10. Q. Chen, J.-S. Boisvert, M.S. Sharawi, and R. Kashyap, "Bragg gratings with novel waveguide models fabricated in bulk glass via fs-laser writing and their slow-light effects," Opt. Express, Vol. 32, pp. 188-204, 2024. [DOI:10.1364/OE.509482] [PMID]
11. A. Rostami and A. Yazdanpanah-Goharriz, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm," Prog. Electromagn. Res., Vol. 75, pp. 329-356, 2007. [DOI:10.2528/PIER07061802]
12. G. Cormier, R. Boudreau, and S. Thériault, "Real-coded genetic algorithm for Bragg grating parameter synthesis," J. Opt. Soc. Am. B, Vol. 18, pp. 1771-1776, 2001. [DOI:10.1364/JOSAB.18.001771]
13. W. Ye, B. Gu, and Y. Wang, "Airborne distributed position and orientation system transfer alignment method based on fiber bragg grating," Sensors, Vol. 20, pp. 2120(1-19), 2020. [DOI:10.3390/s20072120] [PMID] []
14. T. Agliullin, V. Anfinogentov, O. Morozov, A. Sakhabutdinov, B. Valeev, A. Niyazgulyeva, and Y. Garovov, "Comparative analysis of the methods for fiber Bragg structures spectrum modeling," Algorithms, Vol. 16, pp. 101(1-15), 2023. [DOI:10.3390/a16020101]
15. M. Farrokhi, F. Taheri, E. Adibnia, S. Mehrtabar, Z. Rassaf, S.H. Tooyserkani, Y. Rajabloo, G.S. Tooyserkani, Z. Ranjbar, and E. Hashemi, The AI Diagnostician: Improving Medical Diagnosis with Artificial Intelligence Kindle. pp. 1-219, 2024.
16. E. Adibnia, M.A. Mansouri-Birjandi, M. Ghadrdan, and P. Jafari, "A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches," Sci. Rep., Vol. 14, pp. 5787(1-17), 2024. [DOI:10.1038/s41598-024-56522-3] [PMID] []
17. K. Abdelsalam, E. Ordouie, M.G. Vazimali, F.A. Juneghani, P. Kumar, G.S. Kanter, and S. Fathpour, "Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate," Opt. Lett., Vol. 46, pp. 2730 2733, 2021. [DOI:10.1364/OL.427101] [PMID]
18. [N.A. Mohammed, T.A. Ali, M.H. Aly, and O. Member, "Evaluation and performance enhancement for accurate FBG temperature sensor measurement with different apodization profiles in single and quasi-distributed DWDM systems," Opt. Lasers Eng., Vol. 55, pp. 22-34, 2014. [DOI:10.1016/j.optlaseng.2013.10.013]
19. H. Zhang, "A novel method of optimal apodization selection for chirped fiber Bragg gratings," Optik, Vol. 125, pp. 1646-1649, 2014. [DOI:10.1016/j.ijleo.2013.09.066]
20. D.P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
21. N. Ketkar, Introduction to keras, in Deep learning with python: a hands-on introduction, pp. 97-111, 2017. [DOI:10.1007/978-1-4842-2766-4_7]
22. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and M. Isard, "{TensorFlow}: a system for {Large-Scale} machine learning," in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265-283, 2016.
23. Y. Zhao, R. Hou, and C. Zhou, "Writing wide bandwidth nonchirped fiber Bragg gratings with high sidelobe suppression ratio by linearly scaling apodization," Opt. Eng., Vol. 49, pp. 085001(1-5), 2010. [DOI:10.1117/1.3475947]
24. C. Li, X. Peng, J. Liu, C. Wang, S. Fan, and S. Cao, "D-shaped fiber Bragg grating ultrasonic hydrophone with enhanced sensitivity and bandwidth," J. Lightwave Technol., Vol. 37, pp. 2100-2108, 2019. [DOI:10.1109/JLT.2019.2898233]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb