Volume 17, Issue 1 (Winter-Spring 2023)                   IJOP 2023, 17(1): 73-80 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydarinasab Z, Karami M, Sarreshtedari F. Investigation and Optimization of Sub-Doppler DAVLL Error Signal for ECDL Stabilization. IJOP 2023; 17 (1) :73-80
URL: http://ijop.ir/article-1-541-en.html
1- Magnetic Resonance Research Laboratory, Department of Physics, College of Science, University of Tehran, Tehran, Iran
Abstract:   (416 Views)
Sub-Doppler dichroic atomic vapor laser lock (DAVLL) is a modulation-free laser stabilization method that combines DAVLL and saturated absorption spectroscopy (SAS). The performance of this highly sensitive stabilization technique strongly depends on the characteristics of the generated error signal. The slope of the error signal determines the lock sensitivity or how fast the frequency compensation could be made in the feedback loop, and the amplitude of the error signal determines the lock stability or how much noise the feedback loop can tolerate before laser unlocking. We have analytically modeled the error signal of the sub-Doppler DAVLL considering all possible transitions between Zeeman sublevels and compared it with the experimental results. Using the analytical and experimental results, it is shown that the values of the required magnetic fields for maximizing the slope and amplitude of the error signal are close to each other. Selecting the mentioned values of the magnetic field for optimization of the sub-Doppler DAVLL error signal is highly useful for sensitive and stable laser locking.
Full-Text [PDF 708 kb]   (136 Downloads)    
Type of Study: Research | Subject: Lasers, Optical Amplifiers, Laser Optics
Received: 2023/08/21 | Revised: 2024/05/28 | Accepted: 2024/01/19 | Published: 2024/01/21

1. J. Debs, N. Robins, A. Lance, M. Kruger, and J. Close, "Piezo-locking a diode laser with saturated absorption spectroscopy," Appl. Opt., Vol. 47 pp. 5163-5166, 2008. [DOI:10.1364/AO.47.005163] [PMID]
2. P. Kulatunga, H. Busch, L. Andrews, and C. Sukenik, "Two-color polarization spectroscopy of rubidium," Opt. Commun., Vol. 285, pp. 2851 2853, 2012. [DOI:10.1016/j.optcom.2012.02.032]
3. K.L. Corwin, Z.-T. Lu, C.F. Hand, R.J. Epstein, and C.E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," in Collected Papers of Carl Wieman, World Scientific. pp. 809-812, 2008. [DOI:10.1142/9789812813787_0114]
4. F. Ghashghaei, A. Rashedi, F. Sarreshtedari, and M. Sabooni, "Effect of the magnetically induced dichroism on the distribution of atomic polarization in Cesium vapor cells," Adv. Opt. Technol., Vol. 9, pp. 209-215, 2020. [DOI:10.1515/aot-2019-0066]
5. J.I. Kim, C.Y. Park, J.Y. Yeom, E.B. Kim, and T.H. Yoon, "Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp," Opt. Lett., Vol. 28, pp. 245-247, 2003. [DOI:10.1364/OL.28.000245] [PMID]
6. A. Millett-Sikking, I.G. Hughes, P. Tierney, and S.L. Cornish, "DAVLL lineshapes in atomic rubidium," J Phys. B: Atom., Molecul. Opt. Phys., Vol. 40, pp. 187-198, 2006. [DOI:10.1088/0953-4075/40/1/017]
7. D.-Q. Su, R.-J. Liu, C.-B. Zhang, Z.-H. Ji, Y.-T. Zhao, L.-T. Xiao, and S.-T. Jia, "Laser frequency stabilization in sub-nanowatt level using nanofibers," J. Phys. D: Appl. Phys., Vol. 51, pp. 465001(1-5), 2018. [DOI:10.1088/1361-6463/aae2f8]
8. S. Yin, H. Liu, J. Qian, T. Hong, Z. Xu, and Y. Wang, "Observation and optimization of DAVLL spectra on the 1S0-3P1 transition of neutral mercury atom," Opt. Commun., Vol. 285, pp. 5169-5174, 2012. [DOI:10.1016/j.optcom.2012.07.061]
9. L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y. Jiang, P. Chen, and M. Weidemüller, "Laser frequency stabilization using a commercial wavelength meter," Rev Sci. Instruments, Vol. 89, pp. 043103(1-5), 2018. [DOI:10.1063/1.5025537] [PMID]
10. F. Jia, J. Zhang, L. Zhang, F. Wang, J. Mei, Y. Yu, Z. Zhong, and F. Xie, "Frequency stabilization method for transition to a Rydberg state using Zeeman modulation," Appl. Opt., Vol. 59, pp. 2108-2113, 2020. [DOI:10.1364/AO.384315] [PMID]
11. F. Zi, X. Wu, W. Zhong, R.H. Parker, C. Yu, S. Budker, X. Lu, and H. Müller, "Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy," Appl. Opt., Vol. 56, pp. 2649 2652, 2017. [DOI:10.1364/AO.56.002649] [PMID]
12. P. Crump, C. Schultz, H. Wenzel, G. Erbert, and G. Tränkle, "Efficiency-optimized monolithic frequency stabilization of high-power diode lasers," J. Phys. D: Appl. Phys., Vol. 46, pp. 013001(1-20), 2012. [DOI:10.1088/0022-3727/46/1/013001]
13. R.R. Galiev, N.M. Kondratiev, V.E. Lobanov, A.B. Matsko, and I.A. Bilenko, "Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator," Phys. Rev. Appl., Vol. 14, pp. 014036(1 15), 2020. [DOI:10.1103/PhysRevApplied.14.014036]
14. J. Jeong, S. Lee, S. Hwang, J. Baek, H.-R. Noh, and G. Moon, "Theoretical and Experimental Study of Optimization of Polarization Spectroscopy for the D2 Closed Transition Line of 87Rb Atoms," Appl. Sci., Vol. 11, pp. 7219(1 8), 2021. [DOI:10.3390/app11167219]
15. R. Giannini, E. Breschi, C. Affolderbach, G. Bison, G. Mileti, H.-P. Herzig, and A. Weis. "Sub-Doppler diode laser frequency stabilization with the DAVLL scheme on the D1 line of a 87Rb vapor-cell," in SPIE 14th International School on Quantum Electronics: Laser Physics and Applications. 2007.
16. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D-Atom., Molecul., Opt. Plasma Phys., Vol. 22, pp. 279-283, 2003. [DOI:10.1140/epjd/e2002-00238-4]
17. D.-Q. Su, T.-F. Meng, Z.-H. Ji, J.-P. Yuan, Y.-T. Zhao, L.-T. Xiao, and S.-T. Jia, "Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium," Appl. Opt., Vol. 53, pp. 7011-7016, 2014. [DOI:10.1364/AO.53.007011] [PMID]
18. J. Wang, S. Yan, Y. Wang, T. Liu, and T. Zhang, "Modulation-free frequency stabilization of a grating-external-cavity diode laser by magnetically induced sub-Doppler dichroism in cesium vapor cell," Jap. J. Appl. Phys., Vol. 43, pp. 1168-1171, 2004. [DOI:10.1143/JJAP.43.1168]
19. M. Karami, Z. Heydarinasab, and F. Sarreshtedari, "Sub-Doppler dichroism as a useful tool in alkali atom hyperfine spectroscopy," Laser Phys., Vol. 33, pp. 125701(1-7), 2023. [DOI:10.1088/1555-6611/ad04c7]
20. G.-W. Choi and H.-R. Noh, "Sub-Doppler DAVLL spectra of the D1 line of rubidium: a theoretical and experimental study," J. Phys. B: Atom., Molecul. Opt. Phys., Vol. 48, pp. 115008(1-11), 2015. [DOI:10.1088/0953-4075/48/11/115008]
21. H. Liu, S. Yin, J. Qian, Z. Xu, and Y. Wang, "Optimization of Doppler-free magnetically induced dichroic locking spectroscopy on the 1S0-3P1 transition of a neutral mercury atom," J. Phys. B: Atom., Molecul., Opt. Phys., Vol. 46, pp. 085005(1-6), 2013. [DOI:10.1088/0953-4075/46/8/085005]
22. L. Mudarikwa, K. Pahwa, and J. Goldwin, "Sub-Doppler modulation spectroscopy of potassium for laser stabilization," J. Phys. B: Atom., Molecul. Opt. Phys., Vol. 45, pp. 065002(1-8), 2012. [DOI:10.1088/0953-4075/45/6/065002]
23. D. Sarkisyan, A. Papoyan, T. Varzhapetyan, J. Alnis, K. Blush, and M. Auzinsh, "Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapour cell in the presence of a magnetic field," J. Opt. A: Pure Appl. Opt., Vol. 6, pp. S142-S150, 2004. [DOI:10.1088/1464-4258/6/3/023]
24. S. Lang, S. Kanorsky, T. Eichler, Müller-Siebert R, TW. Hänsch, and A. Weis, "Optical pumping of Cs atoms in solid 4 He," Phys. Rev. A. Vol. 60, pp. 3867-3877, 1999. [DOI:10.1103/PhysRevA.60.3867]
25. M. Karami, Z. Heydarinasab, and F. Sarreshtedari, "Implementation of Sup-Doppler DAVLL laser lock on atomic transition," in the 29th Iranian Nuclear Conference, INC29-1331. 2023.

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb