Volume 17, Issue 1 (Winter-Spring 2023)                   IJOP 2023, 17(1): 31-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roostaei N, Hamidi S M, Javadi S. A New Kind of Microstructure Pattern Transferring onto Glass Substrate Using the Plasma Treatment. IJOP 2023; 17 (1) :31-38
URL: http://ijop.ir/article-1-537-en.html
1- Magneto-plasmonic Lab, Laser and Plasmonic Lab, Shahid Beheshti University, Tehran, Iran.
2- Central Laboratory, Shahid Beheshti University, Tehran, Iran
Abstract:   (724 Views)
In this work, a two-dimensional square periodic array was successfully transferred onto a rigid glass substrate during an innovative and simple-design two-step process of pattern transferring using Kapton tape and plasma technology. Flexible and stretchable, Kapton tape was selected for pattern transferring onto the glass for the first time herein; in parallel, the vacuum plasma treatment was utilized to improve surface adhesion properties and aid the pattern transferring process. The proposed 2D square plasmonic array supported the plasmon-induced transparency (PIT) phenomenon, which is caused by the excitation of surface plasmon resonances. The current study simulated the fabricated plasmonic structure using the finite-difference time-domain (FDTD) method and investigated the propagation of surface plasmon polariton (SPP) and cavity modes which enhanced transmission. This fabrication technique can offer new insights for micro/nanofabrication technology.
Full-Text [PDF 583 kb]   (465 Downloads)    
Type of Study: Applicable | Subject: Nanophotonics and Nanostructures
Received: 2023/06/27 | Revised: 2024/05/28 | Accepted: 2023/10/17 | Published: 2023/10/19

References
1. M. Kitsara, D. Kontziampasis, O. Agbulut, and Y. Chen, "Heart on a chip: micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering," Microelectron. Eng., Vol. 203, pp. 44-62, 2019. [DOI:10.1016/j.mee.2018.11.001]
2. S. Lv, J. Nie, Q. Gao, C. Xie, L. Zhou, J. Qiu, J. Fu, X. Zhao, and Y. He, "Micro/nanofabrication of brittle hydrogels using 3D printed soft ultrafine fiber molds for damage-free demolding," Biofabric., Vol. 12, pp. 025015 (1-20), 2020. [DOI:10.1088/1758-5090/ab57d8] [PMID]
3. W. Qiao, D. Pu, and L.-S. Chen, "Nanofabrication Toward High-Resolution and Large Area," 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2021. [DOI:10.1109/MEMS51782.2021.9375398]
4. J. Thirumalai, Micro/Nanolithography: A Heuristic Aspect on the Enduring Technology, IntechOpen, 2018. [DOI:10.5772/intechopen.68234]
5. J. Yan, Micro and nano fabrication technology, Springer, 2018. [DOI:10.1007/978-981-13-0098-1]
6. Y.E. Yoo, C. Smadja, and M. Ammar, Micro/nano fabrication and packaging technologies for bio systems, Chapter of the Microtechnology and MEMS book series (MEMS), pp. 89-137, 2020. [DOI:10.1007/978-981-13-6549-2_3]
7. D. Fine, A. Grattoni, R. Goodall, S.S. Bansal, C. Chiappini, S. Hosali, A.L. van de Ven, S. Srinivasan, X. Liu, and B. Godin, "Silicon micro‐and nanofabrication for medicine," Adv. Healthcare Mater., Vol. 2, pp. 632-666, 2013. [DOI:10.1002/adhm.201200214] [PMID] []
8. T. Qian and Y. Wang, "Micro/nano-fabrication technologies for cell biology," Med. Biolog. Eng. Comput., Vol. 48, pp. 1023-1032, 2010. [DOI:10.1007/s11517-010-0632-z] [PMID] []
9. S. Barkam, S. Saraf, and S. Seal, "Fabricated micro‐nano devices for in vivo and in vitro biomedical applications," Wiley Interdisciplinary Rev.: Nanomedicine Nanobiotechnol., Vol. 5, pp. 544-568, 2013. [DOI:10.1002/wnan.1236] [PMID]
10. A.K. Basu, A. Basu, and S. Bhattacharya, "Micro/nano fabricated cantilever-based biosensor platform: A review and recent progress," Enzyme Microbial Technol., Vol. 139, pp. 109558 (1-15), 2020. [DOI:10.1016/j.enzmictec.2020.109558] [PMID]
11. A. Mekonen, S. Abebe, and T. Adali, "Microfluidics devices manufacturing and biomedical applications," J. Biosens Bioelectron., Vol. 10, pp. 1000265 (1-9), 2019.
12. N. Roostaei and S.M. Hamidi, "Two-dimensional biocompatible plasmonic contact lenses for color blindness correction," Scientific Reports, Vol. 12, pp. 1-8, 2022. [DOI:10.1038/s41598-022-06089-8] [PMID] []
13. C. Jia, B. Ma, N. Xin, and X. Guo, "Carbon electrode-molecule junctions: A reliable platform for molecular electronics," Acc. Chem. Research, Vol. 48, pp. 2565-2575, 2015. [DOI:10.1021/acs.accounts.5b00133] [PMID]
14. L. Herrer, S. Martín, and P. Cea, "Nanofabrication techniques in large-area molecular electronic devices," Appl. Sci., Vol. 10, pp. 6064 (1-43), 2020. [DOI:10.3390/app10176064]
15. Z. Lu, J. Zheng, J. Shi, B.F. Zeng, Y. Yang, W. Hong, and Z.Q. Tian, "Application of Micro/Nanofabrication Techniques to On‐Chip Molecular Electronics," Small Methods, Vol. 5, pp. 2001034 (1-19), 2021. [DOI:10.1002/smtd.202001034] [PMID]
16. Y. Duan, G. You, K. Sun, Z. Zhu, X. Liao, L. Lv, H. Tang, B. Xu, and L. He, "Advances in wearable textile-based micro energy storage devices: structuring, application and perspective," Nanoscale Adv., Vol. 3, pp. 6271-6293, 2021. [DOI:10.1039/D1NA00511A] [PMID] []
17. X. Cao, C. Tan, M. Sindoro, and H. Zhang, "Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion," Chem. Soc. Rev., Vol. 46, pp. 2660-2677, 2017. [DOI:10.1039/C6CS00426A] [PMID]
18. P. Liu, K. Zhu, Y. Gao, H. Luo, and L. Lu, "Recent progress in the applications of vanadium‐based oxides on energy storage: from low‐dimensional nanomaterials synthesis to 3D micro/nano‐structures and free‐standing electrodes fabrication," Adv. Energy Mater., Vol. 7, pp. 1700547 (1-24), 2017. [DOI:10.1002/aenm.201700547]
19. X. Luo, W. Liu, C. Chen, G. Jiang, X. Hu, H. Zhang, and M. Zhong, "Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation," Opt. Laser Technol., Vol. 139, pp. 106969 (1-9), 2021. [DOI:10.1016/j.optlastec.2021.106969]
20. L. Fonseca, C. Cane, and B. Mazzolai, "Application of micro and nanotechnologies to food safety and quality monitoring," Measure. Control, Vol. 40, pp. 116-119, 2007. [DOI:10.1177/002029400704000405]
21. X. Xie, H. Pu, and D.-W. Sun, "Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis," Critical Rev. Food Sci. Nutrition, Vol. 58, pp. 2800-2813, 2018. [DOI:10.1080/10408398.2017.1341866] [PMID]
22. N. Roostaei and S.M. Hamidi, "All-dielectric achiral etalon-based metasurface: Ability for glucose sensing," Opt. Commun., Vol. 527, pp. 128971 (1-10), 2023. [DOI:10.1016/j.optcom.2022.128971]
23. M. Ghasemi, N. Roostaei, F. Sohrabi, S.M. Hamidi, and P. Choudhury, "Biosensing applications of all-dielectric SiO2-PDMS meta-stadium grating nanocombs," Opt. Mater. Exp., Vol. 10, pp. 1018-1033, 2020. [DOI:10.1364/OME.389361]
24. F. Sohrabi, T. Asadishad, M.H. Ghazimoradi, T. Mahinroosta, S. Saeidifard, S.M. Hamidi, and S. Farivar, "Plasmophore enhancement in fibroblast green fluorescent protein-positive cells excited by smoke," ACS Omega, Vol. 5, pp. 12278-12289, 2020. [DOI:10.1021/acsomega.0c00496] [PMID] []
25. J. Yao, W. Qiang, H. Wei, Y. Xu, B. Wang, Y. Zheng, X. Wang, Z. Miao, L. Wang, and S. Wang, "Ultrathin and Robust Micro-Nano Composite Coating for Implantable Pressure Sensor Encapsulation," ACS Omega, Vol. 5, pp. 23129-23139, 2020. [DOI:10.1021/acsomega.0c02897] [PMID] []
26. C.-T. Chou Chao, Y.-F. Chou Chau, and H.-P. Chiang, "Biosensing on a plasmonic dual-band perfect absorber using intersection nanostructure," ACS Omega, Vol. 7, pp. 1139-1149, 2021. [DOI:10.1021/acsomega.1c05714] [PMID] []
27. C. D. Dieleman, J. van der Burgt, N. Thakur, E.C. Garnett, and B. Ehrler, "Direct patterning of CsPbBr3 nanocrystals via electron-beam lithography," ACS Appl. Energy Mater., Vol. 5, pp. 1672-1680, 2022. [DOI:10.1021/acsaem.1c03091] [PMID] []
28. Y. Chen, "Nanofabrication by electron beam lithography and its applications: A review," Microelectron. Eng., Vol. 135, pp. 57-72, 2015. [DOI:10.1016/j.mee.2015.02.042]
29. D. Baek, S. H. Lee, B.-H. Jun, and S. H. Lee, Lithography Technology for Micro-and Nanofabrication in Nanotechnology for Bioapplications, 2021, Springer. pp. 217-233. [DOI:10.1007/978-981-33-6158-4_9] [PMID]
30. Y.-Q. Zheng, Y. Liu, D. Zhong, S. Nikzad, S. Liu, Z. Yu, D. Liu, H.-C. Wu, C. Zhu, and J. Li, "Monolithic optical microlithography of high-density elastic circuits," Science, Vol. 373, pp. 88-94, 2021. [DOI:10.1126/science.abh3551] [PMID]
31. K.S. Park, K.S. Lee, and M.M. Sung, "Soft Lithographic Methods to Micro/Nanofabrication," Polymer Sci. Technol., Vol. 23, pp. 629-635, 2012.
32. P. Kim, K.W. Kwon, M.C. Park, S.H. Lee, S.M. Kim, and K.Y. Suh, "Soft lithography for microfluidics: a review," Biochip J. Vol. 2, pp. 1-11, 2008.
33. S.Y. Kim, J. Gwyther, I. Manners, P.M. Chaikin, and R.A. Register, "Metal‐containing block copolymer thin films yield wire grid polarizers with high aspect ratio," Adv. Mater., Vol. 26, pp. 791-795, 2014. [DOI:10.1002/adma.201303452] [PMID]
34. S.H. Mir, G. Rydzek, L.A. Nagahara, A. Khosla, and P. Mokarian-Tabari, "Recent Advances in Block-Copolymer Nanostructured Subwavelength Antireflective Surfaces," J. Electrochem. So., Vol. 167, pp. 037502 (1-4), 2019. [DOI:10.1149/2.0022003JES]
35. B. Landeke-Wilsmark and C. Hägglund, "Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template," Nanotechnol., Vol. 33, pp. 325302 (1-13), 2022. [DOI:10.1088/1361-6528/ac64b1] [PMID]
36. X.-M. Li, J. Huskens, and D.N. Reinhoudt, "Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies," J. Mater. Chem., Vol. 14, pp. 2954-2971, 2004. [DOI:10.1039/b406037g]
37. S. Talukder, B. Gogoi, P. Kumar, R. Pratap, R. Maoz, and J. Sagiv, "Advanced Nanopatterning Using Scanning Probe Technology," Materials Today: Proceedings, Vol. 18, pp. 740-743, 2019. [DOI:10.1016/j.matpr.2019.06.480]
38. A.V. Shneidman, K.P. Becker, M.A. Lukas, N. Torgerson, C. Wang, O. Reshef, M.J. Burek, K. Paul, J. McLellan, and M. Lončar, "All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography," ACS Photon., Vol. 5, pp. 1839-1845, 2018. [DOI:10.1021/acsphotonics.8b00022]
39. T. Lee, S. Kwon, H.-J. Choi, H. Lim, and J. Lee, "Highly sensitive and reliable microRNA detection with a recyclable microfluidic device and an easily assembled SERS substrate," ACS Omega, Vol. 6, pp. 19656-19664, 2021. [DOI:10.1021/acsomega.1c02306] [PMID] []
40. A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, and F. Faupel, "Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects," Adv. Colloid Interface Sci., Vol. 170, pp. 2-27, 2012. [DOI:10.1016/j.cis.2011.11.001] [PMID]
41. M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar, J.o.A.n. Labrincha, and D.M. Tobaldi, "One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol-gel technique," ACS Omega, Vol. 3, pp. 13227-13238, 2018. [DOI:10.1021/acsomega.8b02122] [PMID] []
42. A. Tandon, M.T. Raza, S. Park, S. Lee, T.B.N. Nguyen, T.H.N. Vu, S. Kim, T.H. Ha, and S.H. Park, "Configuration Analysis of a Lizard Skin-like Pattern Formed by DNA Self-Assembly," ACS omega, Vol. 6, pp. 27038-27044, 2021. [DOI:10.1021/acsomega.1c03593] [PMID] []
43. M. Kim, S. Nabeya, D.K. Nandi, K. Suzuki, H.-M. Kim, S.-Y. Cho, K.-B. Kim, and S.-H. Kim, "Atomic layer deposition of nickel using a heteroleptic Ni precursor with NH3 and selective deposition on defects of graphene," ACS Omega, Vol. 4, pp. 11126-11134, 2019. [DOI:10.1021/acsomega.9b01003] [PMID] []
44. E.D. Palik, Handbook of optical constants of solids, Vol. 3, Academic press, 1998. [DOI:10.1016/B978-0-08-055630-7.50004-3]
45. P.B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, pp. 4370 (1-10), 1972. [DOI:10.1103/PhysRevB.6.4370]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb