Volume 16, Issue 2 (Summer-Fall 2022)                   IJOP 2022, 16(2): 131-138 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmani I, Ghanaatshoar M. Influence of Laser Pulse Energy on CFTS Thin Film Deposited by Pulsed Laser Deposition. IJOP 2022; 16 (2) :131-138
URL: http://ijop.ir/article-1-507-en.html
1- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Abstract:   (62 Views)
We investigate the Cu2FeSnS4 (CFTS) thin film. The raw materials of this thin film are copper, iron and tin, which are mixed in the form of tablets and then are deposited on a glass substrate through the process of pulsed laser deposition (PLD). The produced metallic thin films are then sulfurized to carry out the process of merging the element sulfur in the thin films and forming CFTS structure. We investigate the influence of sulfurization temperature and the laser pulse energy in the PLD process on the deposited CFTS thin films. The X-ray diffraction (XRD), Raman and UV-Vis analyses’ results show that by decrease in sulfurization temperature from 600 °C to 550 °C the crystal quality of the thin films is improved, which is realized by increase in volume and quality of the CFTS phase. On the other hand, the results confirm that the laser fluence is a decisive factor which should be taken into account to achieve an optimized structure.
Full-Text [PDF 439 kb]   (28 Downloads)    
Type of Study: Research | Subject: Photovoltaic Cells
Received: 2022/09/4 | Revised: 2023/01/9 | Accepted: 2023/01/13 | Published: 2022/07/19

References
1. B. Saparov, "Next Generation Thin-Film Solar Absorbers Based on Chalcogenides," Chem. Rev., Vol. 122, pp. 10575-10577, 2022. [DOI:10.1021/acs.chemrev.2c00346]
2. T.K. Todorov, O. Gunawan, T. Gokmen, and B.M. David, "Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell," Prog. Photovolt: Research Appl., Vol. 21, pp. 82-87, 2013. [DOI:10.1002/pip.1253]
3. B. Ananthoju, J. Mohapatra, M.K. Jangid, D. Bahadur, N.V. Medhekar, and M. Aslam. "Cation/anion substitution in Cu2ZnSnS4 for improved photovoltaic performance," Sci. Rep., Vol. 6, pp. 1-11, 2016. [DOI:10.1038/srep35369]
4. G.L. Agawane, S.W. Shin, S.A. Vanalakar, A.V. Moholkar, and J.H. Kim, "Next generation promising Cu2(ZnxFe1−x)SnS4 photovoltaic absorber material prepared by pulsed laser deposition technique," Mater. Lett., Vol. 137, pp. 147-149, 2014. [DOI:10.1016/j.matlet.2014.08.118]
5. S.A. Vanalakar, P.S. Patil, J.H. Kim, "Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review," Sol. Energy Materials Sol. Cells, Vol. 182, pp. 204-219, 2018. [DOI:10.1016/j.solmat.2018.03.021]
6. H. He, M. Xiao, Q. Zhong, Y.C. Fu, X.M. Shen, and J.M. Zeng, "Influence of laser pulse energy on the microstructure and optical properties of Cu2ZnSnS4 films by one-step pulsed laser deposition," Ceram. Int., Vol. 40, pp. 13263-13267, 2014. [DOI:10.1016/j.ceramint.2014.05.035]
7. J.G. Hu, W. Tong, I. Muhammad, U. Farooq, S. Chen, Z.H. Zheng, Z.H. Su, X.D. Lin, P. Fan, H.L. Ma, and X.H. Zha, "Pulsed laser deposited and sulfurized Cu2ZnSnS4 thin film for efficient solar cell," Sol. Energy Materials Sol. Cells, Vol. 233, pp. 111383 (1-8), 2021. [DOI:10.1016/j.solmat.2021.111383]
8. E.G Fidha, N. Bitri, S. Mahjoubi, M. Abaab, and I. Ly, "Effect of the spraying temperatures and the sulfurization on the properties of the absorber Cu2FeSnS4 thin films in a solar cell," Mater. Lett., Vol. 215, pp. 62-64, 2018. [DOI:10.1016/j.matlet.2017.12.063]
9. A. Sugaki, A. Kitakaze, and K. Hayashi, "Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal condition and their phase relations," Bulletin de Minéralogie, Vol. 104, pp. 484-495, 1981. [DOI:10.3406/bulmi.1981.7499]
10. S.S. Pollack, G.J. McCarthy, and J.M. Holzer, "An Application of Calculated X-Ray Diffraction Patterns in the Analysis of Reference Powder Data: Trivalent Metal Sulfates," Powder Diffraction, Vol. 7, pp. 215-218, 1992. [DOI:10.1017/S0885715600018741]
11. T. Shibuya, Y. Goto, Y. Kamihara, M. Matoba, K. Yasuoka, L.A. Burton, and A. Walsh, "From kesterite to stannite photovoltaics: Stability and band gaps of the Cu2(Zn,Fe)SnS4 alloy," Appl. Phys. Lett, Vol. 104, pp. 021912-021915, 2014. [DOI:10.1063/1.4862030]
12. X. Meng, H. Deng, J. Tao, H. Cao, X. Li, L. Sun, P. Yang, and J. Chu, "Heating rate tuning in structure, morphology and electricity properties of Cu2FeSnS4 thin films prepared by sulfurization of metallic precursors," J. Alloys Comp., Vol. 680, pp. 446-451, 2016. [DOI:10.1016/j.jallcom.2016.04.166]
13. A. El Kissani, A. Abali, S. Drissi, L. Nkhaili, K. El Assail, A. Outzourhit, D.A. El Haj, and H. Chaib, "Earth Abundant Cu2FeSnS4 Thin Film Solar Cells," In 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), IEEE, pp. 1-4, 2021.
14. S. Wang, R.X. Ma, C.Y. Wang, S.N. Li, H. Wang, "Effects of K ions doping on the structure, morphology and optical properties of Cu2FeSnS4 thin films prepared by blade-coating process," Optoelectron. Lett., Vol. 13, pp. 291-294, 2017. [DOI:10.1007/s11801-017-7108-4]
15. A.M. Abdulaziz, F. Alam, A. Salhi, M. Missous, A.G. Thomas, P. O'Brien, and D.J. Lewis, "A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materials," RSC Adv., Vol. 9, pp. 24146-24153, 2019. [DOI:10.1039/C9RA02926E]
16. S.P. Madhusudanan, M.S. Kumar, K. Mohanta, and S.K. Batabyal, "Photoactive Cu2FeSnS4 thin films: Influence of stabilizers," Appl. Surf. Sci., Vol. 535, pp. 147600 (1-8), 2021. [DOI:10.1016/j.apsusc.2020.147600]
17. C. Nefzi, M. Souli, J.L. Costa-Krämer, J.M. García, and N. Kamoun-Turki, "Growth of the next generation promising Cu2Fe1-xCoxSnS4 thin films and efficient p-CCTS/n-In2S3/n-SnO2F heterojunction for optoelectronic applications," Mater. Res. Bull., Vol. 133, pp. 111028 (1-9), 2021. [DOI:10.1016/j.materresbull.2020.111028]
18. I.M. El Radaf, H.Y.S. Al-Zahrani, S.S. Fouad, and M.S. El-Bana, "Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells," Ceram. Int., Vol. 46, pp. 18778-18784, 2020. [DOI:10.1016/j.ceramint.2020.04.195]
19. Y. Shen, N. Xu, J. Lai, J. Sun, J. Wu, Z. Ying, and T. Okada, "Fabrication of ZnO nanorods by pulsed Nd:YAG laser ablation deposition," J. Vac. Sci. Technol. B,Vol. 27, pp. 1856-1860, 2017. [DOI:10.1116/1.3155829]
20. B. Ananthoju, J. Mohapatra, M.K. Jangid, D. Bahadur, N.V. Medhekar, and M. Aslam, "Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance," Sci. Rep, Vol. 6, pp. 1-11, 2017. [DOI:10.1038/srep35369]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb