Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 107-116 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Davoudi S, Mehrabian S. Numerical Investigation of the Laser Pulse Self-Guiding Through Air in Multiphoton Ionization Regime. IJOP 2022; 16 (1) :107-116
URL: http://ijop.ir/article-1-503-en.html
1- Faculty of Physics, Shahrood University of Technology, Shahrood, Iran
Abstract:   (1077 Views)
In this study, the self-guiding of an ultrashort laser pulse through air is investigated. Therefore, the terms of self-focusing, plasma defocusing and the pulse energy depletion due to the ionization, are considered in the wave equation. Then the laser pulse spot size equation is obtained using the source-dependent expansion method. Our results show that the laser pulse self-guiding occurs for the first twenty Rayleigh lengths. However, the laser pulse undergoes diffraction as it propagates further along the z axis. Moreover, it is seen that the back of the laser pulse is diffracted the most owing to the fact that the plasma is formed as the laser pulse propagates through air. It is also shown that the spot size variations affect the temporal and spatial profiles of the laser intensity, the laser pulse power and the ionization process.
Full-Text [PDF 734 kb]   (934 Downloads)    
Type of Study: Research | Subject: Interaction of Light and Matter
Received: 2022/08/6 | Revised: 2022/11/19 | Accepted: 2022/11/29 | Published: 2022/12/23

References
1. P. Sprangle, E. Esarey, and A. Ting. "Nonlinear interaction of intense laser pulses in plasmas," Phys. Rev. A, Vol. 41, pp. 4463-4469, 1990. [DOI:10.1103/PhysRevA.41.4463]
2. P. Sprangle, J.R. Peñano, and B. Hafizi. "Propagation of intense short laser pulses in the atmosphere," Phys. Rev. E, Vol. 66, pp. 046418 (1-21), 2002. [DOI:10.1103/PhysRevE.66.046418]
3. E. Esarey, P. Sprangle, J. Krall, and A. Ting. "Self-Focusing and Guiding of Short Laser Pulses in Ionizing Gases and Plasmas," IEEE J. Quantum Electron., Vol. 33, pp. 1879-1914, 1997. [DOI:10.1109/3.641305]
4. P. Sprangle, E. Esarey, and J. Krall. "Self-guiding and stability of intense optical beams in gases undergoing ionization," Phys. Rev. E, Vol. 54, pp. 4211-4232, 1996. [DOI:10.1103/PhysRevE.54.4211]
5. P. Sprangle, B. Hafizi, J.R. Peñano, R.F. Hubbard, A. Ting, A. Zigler, and T.M. Antonsen, Jr. "Stable Laser-Pulse Propagation in Plasma Channels for GeV Electron Acceleration," Phys. Rev. Lett., Vol. 85, pp. 5110-5113, 2000. [DOI:10.1103/PhysRevLett.85.5110]
6. J. Zhu, Z. Ji, Y. Deng, J. Liu, R. Li, and Z. Xu, "Long lifetime plasma channel in air generated by multiple femtosecond laser pulses and an external electrical field," Opt. Express, Vol. 14, pp. 4915-4922, 2006. [DOI:10.1364/OE.14.004915]
7. X. Lu, S.Y. Chen, J.L. Ma, L. Hou, G.Q. Liao, J.G. Wang, Y.J. Han, X.L. Liu, H. Teng, H.N. Han, Y.T Li, L.M Chen, Z.Y. Wei, and J. Zhang. "Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence," Sci. Rep., Vol. 5, pp. 15515 (1-9), 2015. [DOI:10.1038/srep15515]
8. J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S.L. Chin, "Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air," Phys. Rev. E, Vol. 72, pp. 026412 (1-7), 2005. [DOI:10.1103/PhysRevE.72.026412]
9. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E, Vol. 66, pp. 016406 (1-4), 2002. [DOI:10.1103/PhysRevE.66.016406]
10. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett., Vol. 20, pp. 73-75, 1995. [DOI:10.1364/OL.20.000073]
11. A. Schmitt-Sody, H.G. Kurz, L. Bergé, S. Skupin, and P. Polynkin. "Picosecond laser filamentation in air," New J. Phys., Vol. 18, pp. 093005 (1-9), 2016. [DOI:10.1088/1367-2630/18/9/093005]
12. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, "Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air," Opt. Commun., Vol. 181, pp. 123-127, 2000. [DOI:10.1016/S0030-4018(00)00734-3]
13. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, "Femtosecond laser-guided electric discharge in air," Phys. Rev. E, Vol. 64, pp. 057401 (1 4), 2001. [DOI:10.1103/PhysRevE.64.057401]
14. H.D. Ladouceur, A.P. Baronavski, D. Lohrmann, P.W. Grounds, and P.G. Girardi, "Electrical conductivity of a femtosecond laser generated plasma channel in air," Opt. Commun., Vol. 189, pp. 107-111, 2001. [DOI:10.1016/S0030-4018(01)01012-4]
15. V.D. Zvorykin, A.A. Ionin, A.O. Levchenko, L.V. Seleznev, D.V. Sinitsyn, I.V. Smetanin, N.N. Ustinovskii and A.V. Shutov. "Extended plasma channels created by UV laser in air and their application to control electric discharges," Plasma Phys. Rep., Vol. 41, pp. 112-146, 2015. [DOI:10.1134/S1063780X15010067]
16. J.P. Wolf, "Short-pulse lasers for weather control," Rep. Prog. Phys., Vol. 81, pp. 026001 (1-34), 2018. [DOI:10.1088/1361-6633/aa8488]
17. J.R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D.F. Gordon, and C.A. Kapetanakos, "Propagation of ultra-short, intense laser pulses in air," Phys. Plasmas, Vol. 11, pp. 2865- 2874, 2004. [DOI:10.1063/1.1648020]
18. H. Yang, J. Zhang, W. Yu, Y.J. Li, and Z.Y. Wei. "Long plasma channels generated by femtosecond laser pulses," Phys. Rev. E, Vol 65, pp. 016406 (1-5), 2001. [DOI:10.1103/PhysRevE.65.016406]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb