Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 79-90 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dirikvand T, Zadsar M, Neghabi M, Amighian J. Improvement of Quality Factor and Reduction of Spectral Bandwidth of Microcavity OLED by Bragg Mirrors. IJOP 2022; 16 (1) :79-90
URL: http://ijop.ir/article-1-500-en.html
1- Department of Physics, Najafabad Branch, Islamic Azad University, Isfahan, Iran
Abstract:   (1280 Views)
A green microcavity organic light-emitting diode combining an Al electrode (top mirror) with a distributed Bragg reflector (bottom mirror) was designed and fabricated to improve the quality factor (more than 51) and enable high reflectance and optimal electrical properties. Experimental results indicated a remarkable increase in electroluminescence and reduction of spectral width at half maximum. Distributed Bragg reflector (DBR) films were prepared at 550°C with a surface roughness of 0.25nm (root mean square: RMS). In addition, according to SiO2/TiO2 refractive indices, they obtained the highest reflection compared to all organic or inorganic DBR devices. The reflectance peak at 591 nm is 94.4% for five pairs of SiO2/TiO2 layers indicating good agreement with theoretical simulation samples. Microcavity Organic Light-Emitting Diode (OLED) with structure: 5 pairs of SiO2/TiO2/ITO(120nm) /MoO3(5nm) /MoO3:NPB(190nm) /NPB(10nm) /Alq3(35nm) /BCP(5nm) /LiF(0.7nm) /AL(200nm) has a quality factor of more than 51, high luminous (30%), remarkable increase in electro-luminescence (EL) and reduction of the spectral full width at half maximum of 10.93nm. This is an applied research that was obtained after detailed investigations on OLED microcavities and has a practical aspect to solving the problems of designing and manufacturing electrical and optical systems such as organic display screens. The innovative aspect of research in the technical knowledge of designing and manufacturing OLED microcavities and achieving an optimal structure using metal mirrors and Bragg reflectors to achieve coherent light output is a new and up-to-date issue that has not been done in Iran so far. As an essential step toward realizing organic lasers, the proposed approach can be used to produce new light sources.
Full-Text [PDF 1023 kb]   (972 Downloads)    
Type of Study: Research | Subject: Lasers, Optical Amplifiers, Laser Optics
Received: 2022/07/22 | Revised: 2022/10/22 | Accepted: 2022/10/22 | Published: 2022/12/23

References
1. A. Genco, G. Giordano, S. Carallo, G. Accorsi, Y. Duan, S. Gambino, and M. Mazzeo "High quality factor microcavity OLED employing metal-free electrically active Bragg mirrors," Org. Electron., Vol. 62: pp. 174-180, 2018. [DOI:10.1016/j.orgel.2018.07.034]
2. J.H. Im, K.-T. Kang, J. S. Choi and K.H. Cho "Strong microcavity effects in hybrid quantum dot/blue organic light emitting diodes using Ag based electrode," J. Luminiscence, Vol. 203, pp. 540-545, 2018. [DOI:10.1016/j.jlumin.2018.07.011]
3. S. Kéna-Cohen and S.R. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nat. Photon. Vol. 4, pp. 371-375, 2010. [DOI:10.1038/nphoton.2010.86]
4. G. Hernández, Fabry-Perot interferometers, Cambridge University Press, 1988.
5. H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, "Recycling of guided mode light emission in planar microcavity light emitting diodes," Appl. Phys. Lett., Vol. 70: pp.799-801, 1997 [DOI:10.1063/1.118226]
6. P. Lodahl, S. Mahmoodian, and S. Stobbe, "Interfacing single photons and single quantum dots with photonic nanostructures," Rev. Mod. Phys. Vol. 87: pp. 347-400, 2015. [DOI:10.1103/RevModPhys.87.347]
7. B. Geffroy, P. Le Roy, C. Prat, "Organic light‐emitting diode (OLED) technology: materials, devices and display technologies," Polym. Int. Vol.55: pp. 572-582, 2006 [DOI:10.1002/pi.1974]
8. H. Sasabe and J. Kido, "Development of high-performance OLEDs for general lighting," J. Mater. Chem. C, Vol. 1, pp. 1699-1707, 2013. [DOI:10.1039/c2tc00584k]
9. N.T. Kalyani and S. Dhoble, "Organic light emitting diodes: Energy saving lighting technology-a review" Renew. Sustain. Energy Rev., Vol. 16, pp. 2696-2723, 2012. [DOI:10.1016/j.rser.2012.02.021]
10. R. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems. Solid state communications," Solid State Commun,Vol. 92, pp. 149-158, 1994. [DOI:10.1016/0038-1098(94)90868-0]
11. W. Koechner, Solid-State Laser Engineering, 6th Ed. Springer 2006.
12. N. Hodgson and H. Weber Optical Resonators, Springer 1997. [DOI:10.1007/978-1-4471-3595-1]
13. B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, "Controlled spontaneous emission of a tri(8hydroxyquinoline) aluminum layer in a microcavity," Journal of Applied Physics, vol. 85(6), pp. 3032-3037, 1999. [DOI:10.1063/1.369639]
14. A.H.W. Choi, Handbook of Optical Microcavities, Taylor and Francis Group, 2015. [DOI:10.1201/b17366]
15. E.M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. D, Vol. 69, p. 681,1946.
16. T. Zhi, T. Tao, B. Liu, Y. Yu, Z. Xie, H. Zhao, and D. Chen, "High Performance Wide Angle DBR Design for Optoelectronic Devices," IEEE Photon. J., Vol. 13, pp. 8200206 (1-6), 2021. [DOI:10.1109/JPHOT.2021.3050761]
17. R.S. Dubey and V. Ganesan, "Fabrication and characterization of SiO2/TiO2 based Bragg reflectors for light trapping applications," Results Phys., Vol. 7: pp. 2271-2276, 2017. [DOI:10.1016/j.rinp.2017.06.041]
18. W. Bin, H. Yingkuan, W.Yanhao, Z. Haonan, S. Bowen, Y. Xiaokun, H. Lin, W. Mingming, L Zhiyong, X Hongdi, and Z Yu "Tunable nanostructured distributed Bragg reflectors for IIInitride optoelectronic applications," RSC Adv., Vol. 10, pp. 23341-23349, 2020. [DOI:10.1039/D0RA03569F]
19. L. Tao, L. Dongyu, Z. Yuan, Y. Meng, W. Yuan, Y. Taoxiang, S. Meiling, H. Yongqing, S. Youming, C. Yiming, and F. Wenjing "Design of monolithic distributed Bragg reflector-integrated photodiode using a tapered waveguide with INP and polymer cladding layer," Opt. Laser Technol., Vol. 144, pp. 107395 (1-6), 2021. [DOI:10.1016/j.optlastec.2021.107395]
20. R.P. Sarzala, P. Spiewak, W. Nakwaski, and M. Wasiak, "Cavity designs for nitride VCSELs with dielectric DBRs operating efficiently at different temperatures," Opt. Laser Technol, Vol. 132, pp. 106482 (1-8), 2020. [DOI:10.1016/j.optlastec.2020.106482]
21. T. Kitabayashi, T.A, N.Satoh, T. Kiba, M. Kawamura, Y. Abe, and K.H. Kim, "Fabrication and characterization of microcavity organic light-emitting diode with CaF2/ZnS distributed Bragg reflector," Thin Solid Films, Vol. 699, pp. 137912 (1-6), 2020. [DOI:10.1016/j.tsf.2020.137912]
22. J. Lin, Y. Hu, and X. Liu, "Microcavity-Enhanced Blue Organic Light‐Emitting Diode for High‐Quality Monochromatic Light Source with Nonquarterwave Structural Design", Adv. Opt. Mater., Vol. 8, pp. 1901421 (1-11), 2020. [DOI:10.1002/adom.201901421]
23. A.A. Sharhan, "Transfer Matrix Mathematical Method for Evaluation the DBR Mirror for Light Emitting Diode and Laser," In J. Phys., Conference Series, IOP Publishing 2020. [DOI:10.1088/1742-6596/1535/1/012018]
24. S.Y. Lee, J.H. Moon, Y.-T. Moon, C.S. Kim, S. Park, J.-T. Oh, H.-H. Jeong, T.-Y. Seong, and H. Amano "Improved light output of AlGaInP-based micro-light emitting diode using distributed Bragg reflector," IEEE Photon. Technol. Lett. Vol. 32, pp. 438-441, 2020. [DOI:10.1109/LPT.2020.2977376]
25. S. Zhou, C. Zheng., J. Lv, Y. Gao, R. Wang, and S. Liu, "GaN-based flip-chip LEDs with highly reflective ITO/DBR ptype and via hole-based n-type contacts for enhanced current spreading and light extraction," Opt. Laser Technol., Vol. 92, pp. 95-100, 2017. [DOI:10.1016/j.optlastec.2017.01.017]
26. X. Chen, W. Kong, T. Chen, H. Liu, G. Huang, and R. Shu, "High-repetition-rate, sub-nanosecond and narrow-bandwidth fiber-laser-pumped green laser for photon-counting shallow-water bathymetric Lidar," Results Phys., Vol. 19, pp. 103563 (1-7), 2020. [DOI:10.1016/j.rinp.2020.103563]
27. J. Wang, Y. Xuan, Y. Da, Y. Xu, and L. Zheng, "Benefits of photonic management strategy for highly efficient bifacial solar cells," Opt. Commun.,: Vol. 462, pp. 125358 (1-8), 2020. [DOI:10.1016/j.optcom.2020.125358]
28. H. Liu, S. Zhang, H. Ding, W. Sun, and L. Sun, "Investigation on the optical dual-band absorption enhancement for graphene photodetector," Results Phys.,Vol. 29, pp. 104747 (1-6), 2021. [DOI:10.1016/j.rinp.2021.104747]
29. M. Xu, M. He., X. Liu, Y. Pan, S. Yu, and X. Ca, "Integrated lithium niobate modulator and frequency comb generator based on Fabry-Perot resonators," In CLEO: A and T. Optical Society of America. 2020. [DOI:10.1364/CLEO_AT.2020.JTh2B.27]
30. D. Admassu, T. Durowade, R. Sellers, and S. Sivananthan, "Effect of interface grading on the optical performance of distributed Bragg reflector multilayers in Fabry-Pérot optical filters," Micro. Technol., Vol. 27, pp. 2785-2790, 2021. [DOI:10.1007/s00542-020-05063-6]
31. Y. Wu, X. Zhao., J. Hu, and H. Xu,"Low threshold optical bistability based on coupled graphene Tamm states," Results Phys., Vol. 21: pp. 103824 (1-5), 2021. [DOI:10.1016/j.rinp.2021.103824]
32. I. A. Derebezov, V.A. Haisler, A V Haisler, D. V. Dmitriev, A. I. Toropov, S. Rodt, M. von Helversen, C. de la Haye, S. Bounouar and S. Reitzenstein," Quantum light sources based on deterministic microlenses structures with (111) In (Ga) As and AlInAs QDs". J. Phys.: Conf. Ser. Vol. 1461, pp. 012028 (1-7). IOP Publishing, 2020. [DOI:10.1088/1742-6596/1461/1/012028]
33. D. Zhou, S. Liang, Y. He, Y. Liu, D. Lu, L. Zhao and W. Wang, "Two 10 Gb/s directly modulated DBR lasers covering 20 nm wavelength range", Opt. Commun., Vol. 475, pp. 126236 (1-4), 2020. [DOI:10.1016/j.optcom.2020.126236]
34. Y. Tao, S. Zhang., M. Jiang, C. Li, P. Zhou, and Z. Jiang,, "High power and high efficiency single-frequency 1030 nm DFB fiber laser," Opt. Laser Technol., Vol. 145, pp. 107519 (1-5), 2022. [DOI:10.1016/j.optlastec.2021.107519]
35. X. Wang, L. Wang, J. Wang, and F. Wang, "High sensitivity interrogation system of fiber Bragg grating sensor with composite cavity fiber laser," Opt. Laser Technol., Vol. 142, pp. 107228 (1-6), 2021. [DOI:10.1016/j.optlastec.2021.107228]
36. W. Li, Y.X. Qi, S.P. Liu, and X.Y. Maa, "High power density and temperature stable vertical-cavity surface-emitting laser with a ring close packing structure," Opt. Laser Technol., Vol. 132, pp. 106510 (1-8), 2020. [DOI:10.1016/j.optlastec.2020.106510]
37. Y. Trabelsi, N. Ben Ali, F.S. Chaves,,and H.V. Posada, "Photonic band gap properties of one-dimensional photonic quasicrystals containing Nematic liquid crystals," Results Phys., Vol. 19, pp. 103600 (1-8), 2020. [DOI:10.1016/j.rinp.2020.103600]
38. T. Akagi, Y. Kozuka, K. Ikeyama, S. Iwayama, M. Kuramoto, T. Saito, T. Tanaka, T. Takeuchi, S. Kamiyama, M. Iwaya. and I. Akasaki, "High-quality AlInN/GaN distributed Bragg reflectors grown by metalorganic vapor phase epitaxy." Appl. Phys. Express, Vol. 13, pp. 125504 (1-4), 2020. [DOI:10.35848/1882-0786/abc986]
39. P. Yeh, Optical waves in layered media, Wiley Interscience, 2005
40. C. Wang, W.D. Li., Z.H. Jiang, X. Yang, G.Y. Sun, and G.J. Zhang "UV-cured nanocomposite coating for surface charging mitigation and breakdown strength enhancement: exploring the combination of surface topographical structure and perfluorooctyl chain," R. Soc. Chem. Adv., Vol. 10, pp. 16422-16430, 2020. [DOI:10.1039/D0RA01344G]
41. L. Yafei, H. Peng, Z .Chen, T. Ailihuamaer, S. Hu, B. Raghothamachar, and M. Dudley "Application of synchrotron X-ray topography to characterization of ion implanted GaN epitaxial layers for the development of vertical power devices," Mater. Res. Adv., Vol. 6, pp. 450-455, 2021. [DOI:10.1557/s43580-021-00098-x]
42. S. Gandrothula, T. Kamikawa., J.S. Speck, S. Nakamura, and S.P. DenBaars, "Study of surface roughness of lifted-off epitaxial lateral overgrown GaN layers for the n-DBR mirror of an III-nitride vertical-cavity surface emitting laser," Appl. Phys. Express, Vol. 14, pp. 031002 (1-8), 2021. [DOI:10.35848/1882-0786/abdcd6]
43. P. Giusto, P. Lova, G. Manfredi, S. Gazzo, P. Srinivasan, S. Radice, and D. Comoretto, "Colorimetric detection of perfluorinated compounds by allpolymer photonic transducers," ACS Omega, Vol. 3, pp. 7517-7522, 2018. [DOI:10.1021/acsomega.8b00554]
44. O. Duyar and H.Z. Durusoy,"Design and preparation of antireflection and reflection optical coatings," Turk. J. Phys., Vol. 28, pp. 139-144, 2004.
45. M. Zadsar, H.R. Fallah, M.H. Mahmoodzadeh, and S.V. Tabatabaei, "The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes," J. Luminescence, Vol. 132, pp. 992-997, 2012. [DOI:10.1016/j.jlumin.2011.12.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb