Tue, Oct 4, 2022
**[Archive]**

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Momeni-Demneh M, Mahdifar A, Roknizadeh R. Control of the Nonclassical Properties of the Two-Mode Kerr Nonlinear Optical System Based on the Nonlinear Coherent States Approach. IJOP. 2022; 16 (1) :27-36

URL: http://ijop.ir/article-1-498-en.html

URL: http://ijop.ir/article-1-498-en.html

2- Department of Physics, University of Isfahan, Isfahan, Iran & Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan, Iran

ABSTRACT—One of the nonlinear optical phenomena which arise out of a χ^{(3)} nonlinearity, is the intensity dependence of the refractive index. In this paper, we describe this phenomenon based on the nonlinear coherent states approach. We show that the deformed two-dimensional oscillator algebra can be used to describe this nonlinear optical system. Then, we construct the nonlinear coherent states for this nonlinear optical system and study their quantum statistical properties. Finally, we find that by changing nonlinearity of the media, it is possible to control the nonclassical properties of the system.

Type of Study: Research |
Subject:
Quantum Optics, Quantum Communications, Quantom Computing

Received: 2022/07/16 | Revised: 2022/10/2 | Accepted: 2022/09/8 | Published: 2022/07/20

Received: 2022/07/16 | Revised: 2022/10/2 | Accepted: 2022/09/8 | Published: 2022/07/20

1. D.E. Chang, V. Vuletic', and M.D. Lukin, "Quantum nonlinear optics photon by photon," Nat. Photon., Vol. 8, pp. 685-694, 2014. [DOI:10.1038/nphoton.2014.192]

2. R. Stassi, V. Macrì, A.F. Kockum, O. Di Stefano, A. Miranowicz, S. Savasta, and F. Nori, "Quantum nonlinear optics without photons," Phys. Rev. A., Vol. 96, pp. 023818 (1-17), 2017. [DOI:10.1103/PhysRevA.96.023818]

3. A.F. Kockum, A. Miranowicz, V. Macrì, S. Savasta, and F. Nori, "Deterministic quantum nonlinear optics with single atoms and virtual photons," Phys. Rev. A., Vol. 95, pp. 063849 (1-23), 2017. [DOI:10.1103/PhysRevA.95.063849]

4. F. Kheirandish, E. Amooghorban, and M. Soltani, "Finite-temperature Casimir effect in the presence of nonlinear dielectrics," Phys. Rev. A., Vol. 83, pp. 032507 (1-9), 2011. [DOI:10.1103/PhysRevA.83.032507]

5. W. Vogel and R. L. de Matos Filho, "Nonlinear Coherent States," Phys. Rev. A, Vol. 54, pp. 4560-4563, 1996. [DOI:10.1103/PhysRevA.54.4560]

6. N.A. Firouzabadi,, and M.K. Tavassoly. "Interaction of a Three-Level Atom (Λ, V, Ξ) with a Two-Mode Field Beyond, Rotating Wave Approximation: Intermixed Intensity-Dependent Coupling," Int. J. Opt. Photon., Vol. 15, pp. 151-166, 2021. [DOI:10.52547/ijop.15.2.151]

7. R. Roknizadeh, and M. K. Tavassoly. "The construction of some important classes of generalized coherent states: the nonlinear coherent states method," J. Phys. A: Math. and Gen., Vol. 37, pp. 8111-8127, 2004. [DOI:10.1088/0305-4470/37/33/010]

8. M.K. Tavassoly, "On the non-classicality features of new classes of nonlinear coherent states," Opt. Commun. Vol. 283, pp. 5081-5091, 2010. [DOI:10.1016/j.optcom.2010.08.002]

9. A. Mahdifar, R. Roknizadeh, and M.H. Naderi, "Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator," J. Phys. A: Math. Gen., Vol. 39, pp. 7003-7014. 2006. [DOI:10.1088/0305-4470/39/22/014]

10. M.H. Naderi, M. Soltanlkotabi, and R. Roknizadeh, "Dynamical Properties of a Two-Level Atom in Three Variants of the Two-Photon q-Deformed Jaynes-Cummings Model," J. Phys. Soc. Jpn., Vol. 73, pp. 2413-2423. 2004. [DOI:10.1143/JPSJ.73.2413]

11. J.G. Garrison and R. . Chiao, Quantum Optics, Oxford University Press, 2008. [DOI:10.1093/acprof:oso/9780198508861.001.0001]

12. M. Momeni-Demneh, A. Mahdifar, and R. Roknizadeh, "Nonlinear optical effects on the atom-field interaction based on the nonlinear coherent states approach," J. Opt. Soc. Amer. B, Vol. 39, pp. 1353-1363, 2022. [DOI:10.1364/JOSAB.445187]

13. J. Schwinger, Quantum Theory of Angular Momentum, eds. L.C. Biedenharn and H. van Dam Academic Press, New York, 1965.

14. L.M. Kuang, F.B. Wang, and Y.G. Zhou, "Dynamics of a harmonic oscillator in a finite-dimensional Hilbert space," Phys. Lett. A., Vol. 183, pp. 1-8, 1993. [DOI:10.1016/0375-9601(93)90878-4]

15. V. Buzek and T. Quang, "Generalized coherent state for bosonic realization of SU(2) Lie algebra," J. Opt. Soc. Amer. B, Vol. pp. 2447-2449, 1989. [DOI:10.1364/JOSAB.6.002447]

16. M.D. Reid and D.F. Walls, "Violations of classical inequalities in quantum optics," Phys. Rev. A, Vol. 34, pp. 1260-1276, 1986. [DOI:10.1103/PhysRevA.34.1260]

17. S.J.D. Phoenix and P.L. Knight, "Fluctuations and entropy in models of quantum optical resonance," Ann. Phys. (NY), Vol. 186, pp. 381, 1988. [DOI:10.1016/0003-4916(88)90006-1]

18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995. [DOI:10.1017/CBO9781139644105]

19. B. Deb, G. Gangopadhyay, and D.S. Ray, "Generation of a class of arbitrary two-mode field states in a cavity," Phys. Rev. A, Vol. 51, pp. 2651-2653, 1995. [DOI:10.1103/PhysRevA.51.2651]

20. K. Vogel, V.M. Akulin, and W.P. Schleich "Quantum state engineering of the radiation field," Phys. Rev. Lett., Vol. 71, pp. 1816-1819, 1995. [DOI:10.1103/PhysRevLett.71.1816]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |