Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 69-78 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Radmard S, Moshaii A, Abazari M. Folded-Resonator Design of Thin-Disk Laser with Variable Thermally-Induced Intra-Cavity Dioptric Power. IJOP 2022; 16 (1) :69-78
URL: http://ijop.ir/article-1-496-en.html
1- Department of Physics, Tarbiat Modarres University, Tehran, Iran.
2- Iranian National Center of Laser Sciences and Technologies, Tehran, Iran.
Abstract:   (247 Views)
This paper presents the design procedure of folded-resonators for high-average power thin-disk lasers (TDLs). Because of the oblique angle of incidence in the laser path inside the resonator, folded resonators introduce astigmatism. Additionally, the dependency of the dioptric power of the active medium on the pump power made the resonator design more complicated. In the first section of this work, the disk thermal lensing was measured using a wavefront sensor, and the measurement procedure was presented and thoroughly discussed. The disk radius of curvature varied between 4.3 m to 6.4 m depending on the pump power. The disk was considered a variable lens inside the resonator based on the measurement results. V-shaped and L-shaped configurations' stability and M2 factor were predicted, optimized, and compared. Astigmatism in the resonator parameters was considered and discussed. While the V-shaped cavity has better beam quality, the L-shaped cavity has less sensitivity to cavity misalignment. The primary approach of this paper was the resonator design of a cavity-dumped disk laser. However, the designed resonator configurations could be utilized in many laser resonators, such as industrial TDLs (to reduce the overall length of the system) and second harmonic-generation in TDLs.
Full-Text [PDF 690 kb]   (123 Downloads)    
Type of Study: Research | Subject: Lasers, Optical Amplifiers, Laser Optics
Received: 2022/07/5 | Revised: 2022/10/16 | Accepted: 2022/10/16 | Published: 2022/12/23

1. A. Sennaroglu, Solid-state lasers and applications, Rochester, N.Y: CRC Press, Ch. 1, 2017. [DOI:10.1201/9781420005295]
2. W.M. Steen and J. Mazumder, Laser material processing, Springer Science and Business Media, 2010. [DOI:10.1007/978-1-84996-062-5]
3. U. Brauch, C. Röcker, T. Graf, and M. Abdou Ahmed, "High-power, high-brightness solid-state laser architectures and their characteristics," Appl. Phys. B, Vol. 128, pp. 58 (1-32), 2022. [DOI:10.1007/s00340-021-07736-0]
4. B. Schmidt and M. Schaefer, "Advanced industrial laser systems and applications," Proc. of SPIE, Vol. 10525, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII, 1052502 (1-13), 2018. [DOI:10.1117/12.2299534]
5. R. Paschotta, "Q-switching," rp-photonics.com/q_switching.html., 2011.
6. R. Paschotta, "Field guide to laser pulse generation," Ed: SPIE press Bellingham, 2008. [DOI:10.1117/3.800629]
7. C. Stolzenburg, A. Voss, T. Grafa, M. Larionovb, and A. Giesenc, "Advanced pulsed thin disk laser sources," SPIE, Vol. 6871 68710H-1, 2008. [DOI:10.1117/12.775151]
8. L. Tarra, A. Olek, V. Stummer, T. Flöry, A. Baltuska, and A. Kugi, "A stochastic nonlinear model of the dynamics of actively Q-switched lasers," ArXiv preprint arXiv:2205.08460, 2022. [DOI:10.1364/OE.464508]
9. J. Brooks, G. Bonner, A. Kemp, and D. Stothard, "Stability of Q-switched 2 µm lasers," OSA Continuum, Vol. 3, pp. 568-579, 2020. [DOI:10.1364/OSAC.389477]
10. S. Radmard, A. Moshaii, and K. Pasandideh, "400 W average power Q-switched Yb:YAG thin-disk-laser," Scientific Reports, Vol. 12, pp. 16918 (1-10), 2022. [DOI:10.1038/s41598-022-20917-x]
11. S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, M. Scharun, and A. Killi, "Recent development of disk lasers at TRUMPF," Solid State Lasers XXV: Technology and Devices, p. 972615, 2016. [DOI:10.1117/12.2212789]
12. L. Dai, R. Liu, X. Li, F. Gong, X. Lei, H. Li, S. Deng, Q. Lv, T. Sun, F. Teng, G. Li, and Y. Jin, "High-efficiency, high-repetition-rate cavity-dumped Q-switched Yb: YAG thin-disk laser based on a 72-pass pump module," Opt. Express, Vol. 30, pp. 19629-19638, 2022. [DOI:10.1364/OE.459255]
13. C. Fries, M. Weitz, C. Theobald, J. Bartschke, and J.A. L'huillier, "Cavity-dumped Yb: YAG ceramic in the 20 W, 12 mJ range at 6.7 ns operating from 20 Hz to 5 kHz with fluorescence feedback control," Appl. Opt., Vol. 55, pp. 6538-6546, 2016. [DOI:10.1364/AO.55.006538]
14. L. Dai, R. Liu, F. Gong, X. Li, S. Deng, Y. Jia, Y. Jin, and G. Li, "Cavity-Dumped Nanosecond Thin-Disk Laser with High Average Power," Chin. J. Lasers, Vol. 48, p. 1301002, 2021. [DOI:10.3788/CJL202148.1301002]
15. W. Koechner, Solid-state laser engineering, Round Hill, VA: Springer, Ch. 10, 2013.
16. S. Arabgari, M. Aghaie, S. Radmard, and S.H. Nabavi, "Thin-disk laser resonator design: The dioptric power variation of thin-disk and the beam quality factor," Optik, Vol. 185, pp. 868-874, 2019. [DOI:10.1016/j.ijleo.2019.03.148]
17. M. Shayganmanesh, M. Daemi, Z. Osgoui, S. Radmard, and S.S. Kazemi, "Measurement of thermal lensing effects in high power thin disk laser," Opt. Laser Technol., Vol. 44, pp. 2292-2296, 2012. [DOI:10.1016/j.optlastec.2012.02.019]
18. H. Injeyan, and G. Goodno, High Power Laser Handbook, New York: McGraw-Hill, 2011.
19. M. Moslehian, S. Arabgari, E. Nahvifard, and S. Radmard, "Measurement of gain coefficient and resonator internal loss in Yb: YAG thin-disk-laser," Opt. Laser Technol., Vol. 118, pp. 151-158, 2019. [DOI:10.1016/j.optlastec.2019.05.002]
20. S. Radmard, S. Arabgari, and M. Shayganmanesh, "Optimization of Yb: YAG thin-disk-laser design parameters considering the pumping-light back-reflection," Opt. Laser Technol., Vol. 63, pp. 148-153, 2014. [DOI:10.1016/j.optlastec.2014.03.002]
21. S. Radmard, S. Arabgari, M. Shayganmanesh, and S. Kazemi, "Investigation on back-reflected pumping light in high-power quasi-end-pumped Yb: YAG thin-disk lasers," IEEE J Quantum Electron, Vol. 48, pp. 1137-1143, 2012. [DOI:10.1109/JQE.2012.2204863]
22. TruMatic 7000| TRUMPF. Available: https://www.trumpf.com/en-CN/products/lases/short-and-ultrashort-pulse-laser/trumicro-series-7000.
23. A. Konrad. (2020). Dynamic Analysis of Multimode and Q-Switch Operation (DMA). Available:lascad.com/lascad_documentation.php.
24. A. Konrad. (2020). The FEA Code of LASCAD. Available: las-cad.com/lascad_documentation.php.

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb