Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 47-60 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdanfar H, Hamidi S M, Roostaei N, Mazhdi Y, Soheilian A. Modifying the Soft Contact Lens for Color Vision Deficiency Correction by Plasmonic Gold Nanoparticles. IJOP 2022; 16 (1) :47-60
URL: http://ijop.ir/article-1-491-en.html
1- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Abstract:   (449 Views)
Color vision deficiency (CVD) is a disorder in which patients cannot distinguish specific colors. In the last few decades, the researchers have attempted to find a solution to cure this deficiency, despite valuable attempts by scientists, a promising and effective remedy has not been attained yet. As curing of CVD with the tinted or dyed glasses and lenses in colorblind patients is not satisfying, in this work, we have studied a novel and simple method using plasmonic gold nanoparticles in the contact lenses to improve CVD based on surface plasmon resonance of gold nanoparticles in the visible spectral range. In this technique, the dispersion of gold particles into the contact lens and transforming them to plasmonic gold nanoparticles provides a color filter that can be applied in the correction of the red-green type of colorblindness.The modified lens blocks a narrow band centered at 560nm, the wavelength that vision spectra of CVD patients overlap at those ones. 
Full-Text [PDF 608 kb]   (148 Downloads)    
Type of Study: Applicable | Subject: Nanophotonics and Nanostructures
Received: 2022/03/27 | Revised: 2022/09/11 | Accepted: 2022/09/17 | Published: 2022/12/23

1. M. Simunovic, "Colour vision deficiency," Eye, Vol. 24, pp. 747-755, 2010. [DOI:10.1038/eye.2009.251]
2. Y.C. Chen, Y. Guan, T. Ishikawa, H. Eto, T. Nakatsue, J. Chao, and M. Ayama, "Preference for color‐enhanced images assessed by color deficiencies," Color Res. Appl., Vol. 39, pp. 234-251, 2014. [DOI:10.1002/col.21795]
3. J. Birch, "Worldwide prevalence of red-green color deficiency," J. Opt. Soc. Amer. A, Vol. 29, pp. 313-320, 2012. [DOI:10.1364/JOSAA.29.000313]
4. S. Ahsana, R. Hussain, M. Fareed, and M. Afzal, "Prevalence of red-green color vision defects among Muslim males and females of Manipur," India Iran. J. Public Health, Vol. 42, pp. 16-24, 2013.
5. A. Roorda and D.R. Williams, "The arrangement of the three cone classes in the living human eye," Nature, Vol. 397, pp. 520-522, 1999. [DOI:10.1038/17383]
6. H. Jägle, E. de Luca, L. Serey, M. Bach, and L.T. Sharpe, "Visual acuity and X-linked color blindness," Graefe's Arch. Clin. Exp. Ophthalmol, Vol. 244, pp. 447-453, 2006. [DOI:10.1007/s00417-005-0086-4]
7. S. Pal, Design of artificial human joints and organs, Springer, Vol. 1, 2014. [DOI:10.1007/978-1-4614-6255-2]
8. A. Tofts, "Color vision deficiency: A hidden disability that needs revealing," Focus: J. Research Scholarly Output, Vol. 2, pp. 63-73, 2007.
9. A. Stockman and L.T. Sharpe, "The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype," Vision Res., Vol. 40, pp. 1711-1737, 2000. [DOI:10.1016/S0042-6989(00)00021-3]
10. K.R. Gegenfurtner and L.T. Sharpe, Color vision, Cambridge University Press, Cambridge, 1999.
11. A.E. Salih, M. Elsherif, M. Ali, N. Vahdati, A.K. Yetisen, and H. Butt, "Ophthalmic Wearable Devices for Color Blindness Management," Adv. Mater. Technol., Vol. 5, pp. 1901134-1901147, 2020. [DOI:10.1002/admt.201901134]
12. L. Gómez -Robledo, E. Valero, R. Huertas, M. Martínez-Domingo, and J. Hernández-Andrés, "Do EnChroma glasses improve color vision for colorblind subjects?," Opt. Express, Vol. 26, pp. 28693-28703, 2018, . [DOI:10.1364/OE.26.028693]
13. A. Seebeck, "Ueber den bei manchen Personen vorkommenden Mangel an Farbensinn," Ann. Phys., Vol. 118, pp. 177-233, 1837. [DOI:10.1002/andp.18371181002]
14. R. Mastey, E.J. Patterson, P. Summerfelt, J. Luther, J. Neitz, M. Neitz, and J. Carroll, "Effect of "colo r-correcting glasses" on chromatic discrimination in subjects with congenital color vision deficiency," Invest. Ophthalmol. Visual Sci., Vol. 57, pp. 192-192, 2016.
15. M.A. Martínez-Domingo, L. Gómez -Robledo, E.M. Valero, R. Huertas, J. Hernández-Andrés, S. Ezpeleta, and E. Hita, "Assessment of VINO filters for correcting red-green Color Vision Deficiency," Opt. Express, Vol. 27, pp. 17954-17967, 2016. [DOI:10.1364/OE.27.017954]
16. N. Almutairi, J. Kundart, N. Muthuramalingam, J. Hayes, K. Citek, and S. Aljohani, Assessment of Enchroma Filter for Correcting Color Vision Deficiency, Pacific University (Oregon), 2017.
17. W. Li and D.R. Flatla, "In 30 Years Later: Has CVD Research Changed the World?," The 21st International ACM SIGACCESS Conference on Computers and Accessibility, pp. 584-590, 2019. [DOI:10.1145/3308561.3354612]
18. L.T. Sharpe and H. Jägle, "I used to be color blind," Color Res. Appl., Vol. 26, pp. S269-S272, 2001. https://doi.org/10.1002/1520-6378(2001)26:1+<::AID-COL58>3.0.CO;2-0 [DOI:10.1002/1520-6378(2001)26:1+3.0.CO;2-0]
19. A.E. Salih, M. Elsherif, F. Alam, A.K. Yetisen, and H. Butt, "Gold Nanocomposite Contact Lenses for Color Blindness Management," ACS nano, Vol.15, pp. 4870-4880, 2021. [DOI:10.1021/acsnano.0c09657]
20. J.B.H. Dartnall, "Visual pigments of rods and cones in human retina," J. Physiol (London), Vol. 298, pp. 501-511, 1980. [DOI:10.1113/jphysiol.1980.sp013097]
21. G. Petrović and H. Fujita, "Deep Correct: Deep Learning Color Correction for Color Blindness. In New Trends in Intelligent Software Methodologies, Tools and Techniques, " IOS Press, pp. 824-834, 2017.
22. M. Elsherif, A.E. Salih, A.K. Yetisen, and H. Butt, "Contact Lenses for Color Vision Deficiency," Adv. Mater. Technol, Vol. 6, pp. 2000797-2000806, 2021. [DOI:10.1002/admt.202000797]
23. H. Zeltzer, "The X-chrom lens," J. Am. Optom. Assoc, Vol. 42, pp. 933-939, 1971.
24. A. Evans, Color is in the Eye of the Beholder: A Guide to Color Vision Deficiency and Colorblindness, Cvd Pub, 2003.
25. I.M. Siegil, "The X-Chrom lens. On seeing red," Surv. Ophthalmol, Vol. 25, pp. 312- 324, 1981. [DOI:10.1016/S0039-6257(81)80001-X]
26. H. Zeltzer, "Method of improving color discrimination," Google Patents, 1971.
27. A. Oli and D. Joshi, "Efficacy of red contact lens in improving color vision test performance based on Ishihara, Farnsworth D15, and Martin Lantern Test," Medical J. Armed Forces India, Vol. 75, pp. 458-463, 2019. [DOI:10.1016/j.mjafi.2018.08.005]
28. D. Harris, ChromaGen Clinical Procedures, Northants: Cantor & Silver Ltd, 1998.
29. D. Harris, "Tinted lens and method of making same," Google Patents, 2011.
30. H.A. Swarbrick, P. Nguyen, T. Nguyen, and T. Pham, "The ChromaGen contact lens system: colour vision test results and subjective responses," Ophthalmic Physiological Opt., Vol. 21, pp. 182-196, 2001. [DOI:10.1046/j.1475-1313.2001.00583.x]
31. T. El-Brolossy, T. Abdallah, M.B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique," Eur. Phys. J.: Spec. Top, Vol. 153, pp. 361-364, 2008. [DOI:10.1140/epjst/e2008-00462-0]
32. L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, and L.B. Oddershede, "Plasmonic heating of nanostructures," Chemical Rev., Vol. 119, pp. 8087-8130, 2019. [DOI:10.1021/acs.chemrev.8b00738]
33. M.A. García, "Surface plasmons in metallic nanoparticles: fundamentals and applications," J. Phys. D: Appl. Phys, Vol. 44, pp. 283001-283021, 2011. [DOI:10.1088/0022-3727/44/28/283001]
34. R.L. Rich and D.G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Curr. Opin. Biotechnol, Vol. 11, pp. 54-61, 2000. [DOI:10.1016/S0958-1669(99)00054-3]
35. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, and M.L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater, Vol. 9, pp. 193-204, 2010. [DOI:10.1038/nmat2630]
36. S. Eustis and M. El-Sayed, "Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes," Chem. Soc. Rev, Vol. 35, pp. 209-217, 2006. [DOI:10.1039/B514191E]
37. K.A. Willets and R.P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem., Vol. 58, pp. 267-297, 2007. [DOI:10.1146/annurev.physchem.58.032806.104607]
38. J. Cao, T. Sun, and K.T. Grattan, "Gold nanorod-based localized surface plasmon resonance biosensors: A review," Sens. Actuators B, Vol. 195, pp. 332-351, 2014. [DOI:10.1016/j.snb.2014.01.056]
39. X. Bai, Y. Wang, Z. Song, Y. Feng, Y. Chen, D. Zhang, and L. Feng, "The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment," Int. J. Mol. Sci, Vol. 21, pp. 2480-2497, 2020. [DOI:10.3390/ijms21072480]
40. S. Link and M.A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B, Vol. 103, pp. 8410-8426, 1999. [DOI:10.1021/jp9917648]
41. E. Petryayeva and U.J. Krull, "Localized surface plasmon resonance: Nanostructures, bioassays and biosensing- A review," Anal. Chim. Acta, Vol. 706, pp. 8-24, 2011. [DOI:10.1016/j.aca.2011.08.020]
42. K.M. Maye, and J.H. Hafner, "Localized surface plasmon resonance sensors," Chem. Rev., Vol. 111, pp. 3828-3857, 2011. [DOI:10.1021/cr100313v]
43. V. Amendola and M. Meneghetti, "Size evaluation of gold nanoparticles by UV− vis spectroscopy," J. Phys. Chem. C, Vol. 113, pp. 4277-4285, 2009. [DOI:10.1021/jp8082425]
44. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, pp. 668- 677, 2003. [DOI:10.1021/jp026731y]
45. S. Zhang and H. Xu, "Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides," Acs Nano, Vol. 6, pp. 8128-8135, 2012. [DOI:10.1021/nn302755a]
46. P.K. Ngumbi, S.W. Mugo, and J.M. Ngaruiya, "Determination of gold nanoparticles sizes via surface plasmon resonance," IOSR J. Appl. Chem., Vol. 11, pp. 25-29, 2018.
47. X. Huang and M.A. El-Sayed, "Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy," J. Adv. Res., Vol. 1, pp. 13-28, 2010. [DOI:10.1016/j.jare.2010.02.002]
48. U. Kreibig and M. Vollmer, Theoretical considerations. In Optical properties of metal clusters, Springer, pp.13-201, 1995. [DOI:10.1007/978-3-662-09109-8_2]
49. J.A. Creighton and D.G. Eadon, "Ultraviolet-visible absorption spectra of the colloidal metallic elements," J. Chem. Soc., Faraday Trans., Vol. 87, pp. 3881-3891, 1991. [DOI:10.1039/FT9918703881]
50. S. Link, and M.A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B, Vol. 103, pp. 4212-4217, 1999. [DOI:10.1021/jp984796o]
51. L. Dykman and N. Khlebtsov, "Gold nanoparticles in biomedical applications: recent advances and perspectives," Chem. Soc. Rev., Vol. 41, pp. 2256-2282, 2012. [DOI:10.1039/C1CS15166E]
52. E.C. Dreaden, A.M. Alkilany, X. Huang, C. J. Murphy, and M.A. El-Sayed, "The golden age: gold nanoparticles for biomedicine," Chem. Soc. Rev., Vol. 41, pp. 2740-2779, 2012. [DOI:10.1039/C1CS15237H]
53. X. Qian and S. Nie, "In Surface‐Enhanced Raman Nanoparticles for in‐vivo Tumor Targeting and Spectroscopic Detection," AIP Conference Proceedings, American Institute of Physics, pp. 81-81, 2010. [DOI:10.1063/1.3482831]
54. M. Hossain, H.Y. Cho, and J.W. Choi, "Gold nanosphere-deposited substrate for distinguishing of breast cancer subtypes using surface-enhanced raman spectroscopy," J. Nanosci. Nanotechnol, Vol. 16, pp. 6299-6303, 2016. [DOI:10.1166/jnn.2016.12122]
55. J.L. Li, and M. Gu, "Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells," Biomaterials, Vol. 31, pp. 9492-9498, 2010. [DOI:10.1016/j.biomaterials.2010.08.068]
56. H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, and J.X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proceedings of the National Academy of Sciences, Vol. 102(44), pp. 15752-15756, 2005. [DOI:10.1073/pnas.0504892102]
57. S.K. Nune, P. Gunda, P.K. Thallapally, Y.Y. Lin, M. Laird Forrest, and C.J. Berkland, "Nanoparticles for biomedical imaging," Expert Opin. Drug Delivery, Vol. 6, pp.1175-1194, 2009. [DOI:10.1517/17425240903229031]
58. C. Sun, J.S. Lee, and M. Zhang, "Magnetic nanoparticles in MR imaging and drug delivery," Adv. Drug Delivery Rev., Vol. 60, pp. 1252-1265, 2008. [DOI:10.1016/j.addr.2008.03.018]
59. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, and M.A. Iatì, "Surface plasmon resonance in gold nanoparticles: a review," J. Phys.: Condens. Matter, Vol. 29, pp. 203002-203050, 2017. [DOI:10.1088/1361-648X/aa60f3]
60. S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, and M.J. Natan, "Submicrometer metallic barcodes," Science, Vol. 294(5540), pp. 137-141, 2001. [DOI:10.1126/science.294.5540.137]
61. J. Zhang, J. Malicka, I. Gryczynski, and J.R. Lakowicz, "Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates," Anal. Biochem, Vol. 330, pp. 81-86, 2004. [DOI:10.1016/j.ab.2004.04.001]
62. L. De Boni, E.L. Wood, C. Toro, and F.E. Hernandez, "Optical saturable absorption in gold nanoparticles," Plasmonics, Vol. 3, pp. 171-176, 2008. [DOI:10.1007/s11468-008-9071-1]
63. S. Nie, Y. Xing, G.J. Kim, and J.W. Simons, "Nanotechnology applications in cancer," Annu. Rev. Biomed. Eng., Vol. 9, pp. 257-288, 2007. [DOI:10.1146/annurev.bioeng.9.060906.152025]
64. Neo cosmo color soft contact lens. http://www.everview.kr/gnuboard4/NEO%20 Lens%20Catalogue.pdf.
65. Q. Zhang, J. Xie, Y. Yu, L. Yang, and J.Y. Lee, "Tuning the crystallinity of Au nanoparticles," Small, Vol. 6, pp. 523-527, 2010. [DOI:10.1002/smll.200902033]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb