1. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, and Y. Zhang, "Advanced carbon for flexible and wearable electronics," Adv. Mater. Vol. 31, pp. 1801072 (1-37), 2019. [
DOI:10.1002/adma.201801072]
2. M.K. Filippidou, E. Tegou, V. Tsouti, and S. Chatzandroulis, "A flexible strain sensor made of graphene nanoplatelets/ polydimethylsiloxane nanocomposite," Microelectron. Eng. Vol. 142, pp. 7-11, 2015. [
DOI:10.1016/j.mee.2015.06.007]
3. H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, and T. Hyeon, "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy," Nat. Nanotechnol. Vol. 11 pp. 566-572, 2016. [
DOI:10.1038/nnano.2016.38]
4. K. Xia, C. Wang, M. Jian, Q. Wang, and Y. Zhang, "CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor," Nano Res. Vol. 11, pp. 1124-1134, 2018. [
DOI:10.1007/s12274-017-1731-z]
5. D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D. H. Kim, J. H. Cho, "Stretchable and multimodal all graphene electronic skin," Adv. Mater., Vol. 28, pp. 2601-2608, 2016. [
DOI:10.1002/adma.201505739]
6. S. Wang, Z. Chen, A. Umar, Y. Wang, T. Tian, Y. Shang, Y. Fan, Q. Qi, D. Xu, "Supra molecularly modified graphene for ultrafast responsive and highly stable humidity sensor," J. Phys. Chem., Vol. 119, pp. 28640-28647, 2015. [
DOI:10.1021/acs.jpcc.5b08771]
7. D. T. Pham, & W. Tiyaboonchai, "Fibroin nanoparticles: A promising drug delivery system," Drug delivery, Vol. 27(1), pp. 431-448, 2020. [
DOI:10.1080/10717544.2020.1736208]
8. H. Huang, H. Guiying, X. Ke, W. Qin, W. Di, Y. S. Matthew, and X. Jianlong, "Achieving long-lived triplet states in intramolecular SF films through molecular engineering," Chem. Vol. 5, pp. 2405-2417, 2019. [
DOI:10.1016/j.chempr.2019.06.007]
9. S. Li, L. Li, G. Chengrui, Q. Huanhuan, and Y. Xixun, "A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films," International journal of biological macromolecules, Vol. 104, pp. 969-978, 2017. [
DOI:10.1016/j.ijbiomac.2017.07.020]
10. G. Freddi, T. Masuhiro, and B. Silvia, "Structure and physical properties of silk fibroin/polyacrylamide blend films," J. Appl. Polymer Science, Vol. 7, pp. 1563-1571, 1999.
https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E [
DOI:10.1002/(SICI)1097-4628(19990307)71:103.0.CO;2-E]
11. C.S. Shivananda, R. Madhu Kumar, B. Narayana, K. Byrappa, P. Renu, Youjiang Wang, and Y. Sangappa, "Preparation and characterisation of silk fibroin-silver nanoparticles (SF-AgNPs) composite films," Mater. Research Innov. Vol. 21, pp. 210-214, 2017. [
DOI:10.1080/14328917.2016.1200844]
12. G.R. Shetty and B.L. Rao, "Preparation, characterization of SF-HPMC blend films and SF microparticles," Mater. Today: Proc. Vol. 49, pp.1822-1826, 2015. [
DOI:10.1016/j.matpr.2021.08.048]
13. G. Perotto, Y. Zhang, D. Naskar, N. Patel, D. L. Kaplan, S.C. Kundu, and F.G. Omenetto, "The optical properties of regenerated silk fibroin films obtained from different sources," Appl. Phys. Lett. Vol. 111, pp.103702 (1-4), 2017. [
DOI:10.1063/1.4998950]
14. R. Yadav, B. Radhika, B. Priya, and P. Roli, "N‐type silk fibroin/TiO2 nanocomposite transparent films: electrical and optical properties," Polymer International, Vol. 71, pp. 74-85, 2022. [
DOI:10.1002/pi.6285]
15. Y. Zheng, W. Lili, Z. Lianjia, W. Dongyi, X. Hao, W. Kang, and H. Wei, "A Flexible Humidity Sensor Based on Natural Biocompatible Silk Fibroin Films," Adv. Mater. Technol. Vol. 6, pp. 2001053 (1-8), 2021. [
DOI:10.1002/admt.202001053]
16. M. Rasheed, S. Shihab, and O.W. Sabah, "An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents," J. Phys.: Conference Series, Vol. 1795, pp. 012052 (1-12), 2021. [
DOI:10.1088/1742-6596/1795/1/012052]
17. F. Ostovari, Y. Abdi, and F. Ghasemi, "Controllable formation of graphene and graphene oxide sheets using photo-catalytic reduction and oxygen plasma treatment," The Europ. Phys. J.-Appl. Phys. Vol. 60, pp. 30401 (1-6), 2012. [
DOI:10.1051/epjap/2012120338]
18. M. Joghataei, F. Ostovari, S. Atabakhsh, and N. Tobeiha. "Heterogeneous ice nucleation by Graphene nanoparticles," Scientific Reports, Vol. 10, pp. 1-9, 2020. [
DOI:10.1038/s41598-020-66714-2]
19. M.T.U. Malik, A. Sarker, S.S.M. Rahat, and S.B. Shuchi, "Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review," Mater. Today Commun. No. 102685, pp. 102685 (1-7), 2021. [
DOI:10.1016/j.mtcomm.2021.102685]
20. A. Reizabal, C.M. Costa, P.G. Saiz, B. Gonzalez, L. Pérez-Álvarez, R.F. de Luis, and S. Lanceros-Méndez, "Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation," J. Hazardous Mater. Vol. 403, pp. 123675 (1-30), 2021. [
DOI:10.1016/j.jhazmat.2020.123675]
21. Z. Chen, Q. Zhang, H. Li, Q. Wei, X. Zhao, and F. Chen, "Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair," Bioactive Mater. Vol. 6, pp. 589-601, 2021. [
DOI:10.1016/j.bioactmat.2020.09.003]
22. Y. Liang, A. Mitriashkin, T.T. Lim, and J.C.H. Goh, "Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering," Biomater. Vol. 276, pp. 121008 (1-14), 2021. [
DOI:10.1016/j.biomaterials.2021.121008]
23. H. Zhang, J. Zhao, T. Xing, S. Lu, and G. Chen, "Fabrication of silk fibroin/graphene film with high electrical conductivity and humidity sensitivity," Polymers, Vol. 11, pp. 1774 (1-12), 2019. [
DOI:10.3390/polym11111774]