Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 19-26 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghgooyan S, Ostovari F, zare H, shahedi Z. Fibroin Silk Synthesis and Fabrication of Silk Fibroin/Graphene Oxide Nano-Sheet Film for Humidity Sensing. IJOP. 2022; 16 (1) :19-26
URL: http://ijop.ir/article-1-490-en.html
1- Physics Department, Faculty of Science, Yazd University, P.O. Box 89195-741, Yazd, Iran
Abstract:   (181 Views)
Silk fibroin (SF) is a natural material that has received special attention due to its excellent mechanical and electrical properties. Nowadays, it is tried to improve the properties of SF by adding other nanomaterials such as graphene oxide (GO). Here, we extracted SF from silk cocoon and studied its properties in pure state and in the combination with graphene oxide (SF/GO). The results have shown that the presence of graphene oxide in the structure of fibroin increases the random winding formation of SF. The measurements show that the water content has a great effect on the properties of SF and SF/GO films.  The contact angle (less than 70) indicates the hydrophilic property of these films. In addition, in times greater than 50 seconds, the contact angles drop to 27° and 5° for SF and SF/GO respectively. Also, the surface resistance of the completely dried SF/GO film increases from 50 kW/sq to 220 kW/sq for 42% wt water content.
Full-Text [PDF 558 kb]   (65 Downloads)    
Type of Study: Research | Subject: Optical Fiber, Fiber Sensors, and Optical Communications
Received: 2022/03/24 | Revised: 2022/10/1 | Accepted: 2022/07/22 | Published: 2022/07/20

References
1. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, and Y. Zhang, "Advanced carbon for flexible and wearable electronics," Adv. Mater. Vol. 31, pp. 1801072 (1-37), 2019. [DOI:10.1002/adma.201801072]
2. M.K. Filippidou, E. Tegou, V. Tsouti, and S. Chatzandroulis, "A flexible strain sensor made of graphene nanoplatelets/ polydimethylsiloxane nanocomposite," Microelectron. Eng. Vol. 142, pp. 7-11, 2015. [DOI:10.1016/j.mee.2015.06.007]
3. H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, and T. Hyeon, "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy," Nat. Nanotechnol. Vol. 11 pp. 566-572, 2016. [DOI:10.1038/nnano.2016.38]
4. K. Xia, C. Wang, M. Jian, Q. Wang, and Y. Zhang, "CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor," Nano Res. Vol. 11, pp. 1124-1134, 2018. [DOI:10.1007/s12274-017-1731-z]
5. D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D. H. Kim, J. H. Cho, "Stretchable and multimodal all graphene electronic skin," Adv. Mater., Vol. 28, pp. 2601-2608, 2016. [DOI:10.1002/adma.201505739]
6. S. Wang, Z. Chen, A. Umar, Y. Wang, T. Tian, Y. Shang, Y. Fan, Q. Qi, D. Xu, "Supra molecularly modified graphene for ultrafast responsive and highly stable humidity sensor," J. Phys. Chem., Vol. 119, pp. 28640-28647, 2015. [DOI:10.1021/acs.jpcc.5b08771]
7. D. T. Pham, & W. Tiyaboonchai, "Fibroin nanoparticles: A promising drug delivery system," Drug delivery, Vol. 27(1), pp. 431-448, 2020. [DOI:10.1080/10717544.2020.1736208]
8. H. Huang, H. Guiying, X. Ke, W. Qin, W. Di, Y. S. Matthew, and X. Jianlong, "Achieving long-lived triplet states in intramolecular SF films through molecular engineering," Chem. Vol. 5, pp. 2405-2417, 2019. [DOI:10.1016/j.chempr.2019.06.007]
9. S. Li, L. Li, G. Chengrui, Q. Huanhuan, and Y. Xixun, "A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films," International journal of biological macromolecules, Vol. 104, pp. 969-978, 2017. [DOI:10.1016/j.ijbiomac.2017.07.020]
10. G. Freddi, T. Masuhiro, and B. Silvia, "Structure and physical properties of silk fibroin/polyacrylamide blend films," J. Appl. Polymer Science, Vol. 7, pp. 1563-1571, 1999. https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E [DOI:10.1002/(SICI)1097-4628(19990307)71:103.0.CO;2-E]
11. C.S. Shivananda, R. Madhu Kumar, B. Narayana, K. Byrappa, P. Renu, Youjiang Wang, and Y. Sangappa, "Preparation and characterisation of silk fibroin-silver nanoparticles (SF-AgNPs) composite films," Mater. Research Innov. Vol. 21, pp. 210-214, 2017. [DOI:10.1080/14328917.2016.1200844]
12. G.R. Shetty and B.L. Rao, "Preparation, characterization of SF-HPMC blend films and SF microparticles," Mater. Today: Proc. Vol. 49, pp.1822-1826, 2015. [DOI:10.1016/j.matpr.2021.08.048]
13. G. Perotto, Y. Zhang, D. Naskar, N. Patel, D. L. Kaplan, S.C. Kundu, and F.G. Omenetto, "The optical properties of regenerated silk fibroin films obtained from different sources," Appl. Phys. Lett. Vol. 111, pp.103702 (1-4), 2017. [DOI:10.1063/1.4998950]
14. R. Yadav, B. Radhika, B. Priya, and P. Roli, "N‐type silk fibroin/TiO2 nanocomposite transparent films: electrical and optical properties," Polymer International, Vol. 71, pp. 74-85, 2022. [DOI:10.1002/pi.6285]
15. Y. Zheng, W. Lili, Z. Lianjia, W. Dongyi, X. Hao, W. Kang, and H. Wei, "A Flexible Humidity Sensor Based on Natural Biocompatible Silk Fibroin Films," Adv. Mater. Technol. Vol. 6, pp. 2001053 (1-8), 2021. [DOI:10.1002/admt.202001053]
16. M. Rasheed, S. Shihab, and O.W. Sabah, "An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents," J. Phys.: Conference Series, Vol. 1795, pp. 012052 (1-12), 2021. [DOI:10.1088/1742-6596/1795/1/012052]
17. F. Ostovari, Y. Abdi, and F. Ghasemi, "Controllable formation of graphene and graphene oxide sheets using photo-catalytic reduction and oxygen plasma treatment," The Europ. Phys. J.-Appl. Phys. Vol. 60, pp. 30401 (1-6), 2012. [DOI:10.1051/epjap/2012120338]
18. M. Joghataei, F. Ostovari, S. Atabakhsh, and N. Tobeiha. "Heterogeneous ice nucleation by Graphene nanoparticles," Scientific Reports, Vol. 10, pp. 1-9, 2020. [DOI:10.1038/s41598-020-66714-2]
19. M.T.U. Malik, A. Sarker, S.S.M. Rahat, and S.B. Shuchi, "Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review," Mater. Today Commun. No. 102685, pp. 102685 (1-7), 2021. [DOI:10.1016/j.mtcomm.2021.102685]
20. A. Reizabal, C.M. Costa, P.G. Saiz, B. Gonzalez, L. Pérez-Álvarez, R.F. de Luis, and S. Lanceros-Méndez, "Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation," J. Hazardous Mater. Vol. 403, pp. 123675 (1-30), 2021. [DOI:10.1016/j.jhazmat.2020.123675]
21. Z. Chen, Q. Zhang, H. Li, Q. Wei, X. Zhao, and F. Chen, "Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair," Bioactive Mater. Vol. 6, pp. 589-601, 2021. [DOI:10.1016/j.bioactmat.2020.09.003]
22. Y. Liang, A. Mitriashkin, T.T. Lim, and J.C.H. Goh, "Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering," Biomater. Vol. 276, pp. 121008 (1-14), 2021. [DOI:10.1016/j.biomaterials.2021.121008]
23. H. Zhang, J. Zhao, T. Xing, S. Lu, and G. Chen, "Fabrication of silk fibroin/graphene film with high electrical conductivity and humidity sensitivity," Polymers, Vol. 11, pp. 1774 (1-12), 2019. [DOI:10.3390/polym11111774]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb