Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 9-18 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Matroodi F, Ahmadi A, Zargar Shoushtari M, Cabrera H. Effect of Ti-Doping on Thermo-Optical and Electronic Properties of WS2 Nanosheets. IJOP. 2022; 16 (1) :9-18
URL: http://ijop.ir/article-1-484-en.html
1- Physics Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran & Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2- Physics Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3- Optics Lab, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11,Trieste 34151, Italy
Abstract:   (216 Views)

Ti-doped tungsten disulfide (WS2) nanosheet-semiconductor is studied for thermo- optical and electronic properties. Thermal diffusivity (D) thermal conductivity (κ) and absorbance were determined as a function of Ti- dopant (0, 7, 14, and 28%). The research focused on the effect of different Ti-dopant concentrations, and we tried to evaluate the thermal parameters using photohermal lens technique as a simple, non-contacting method. The results show an increase in the values of D by 5 times with an increment of Ti-dopant from 0% to 28%. The addition of Ti did not produce any additional phase in the material, although, the separation of the crystallographic planes reduced, indicating the presence of the Ti atoms in the crystal structure.

Full-Text [PDF 588 kb]   (78 Downloads)    
Type of Study: Research | Subject: Nanophotonics and Nanostructures
Received: 2022/02/9 | Revised: 2022/07/15 | Accepted: 2022/07/24 | Published: 2022/07/20

1. W.Cai,A.L.Moore,Y.Zhu,X.Li,S.Chen,L. Shi, and R.S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition," Nano Lett. Vol. 10, pp. 1645-1651, 2010. [DOI:10.1021/nl9041966]
2. L. Liu, H. Yao, H. Li, Z. Wang, and Y. Shi, "Recent advances of low-dimensional materials in lasing applications," FlatChem, Vol. 10, pp. 22-38, 2018. [DOI:10.1016/j.flatc.2018.09.001]
3. M. Nurunnabi and J. McCarthy, Biomedical applications of graphene and 2D nanomaterials, Elsevier, Cambridge, CA, 2019.
4. Z.Zhang,Y.Xie,Y.Ouyang,andY.Chen,"A systematic investigation of thermal conductivities of transition metal dichalcogenides," Int. J. Heat Mass Transf. Vol. 108, pp. 417-422, 2017. [DOI:10.1016/j.ijheatmasstransfer.2016.12.041]
5. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P.J. King, U. Khan, K. Young, A.Gaucher, S. De, R. J. Smith,"Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, Vol. 331, pp. 568- 571, 2011. [DOI:10.1126/science.1194975]
6. A. Ahmadi and M.Z. Shoushtari, "Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low temperature CVD method," J. Electroanal. Chem. Vol. 849, pp. 113361 (1-8), 2019. [DOI:10.1016/j.jelechem.2019.113361]
7. W. Yin, X. Bai, P. Chen, X. Zhang, L. Su, C. Ji, H. Gao, H. Song, and W.W. Yu, "Rational control of size and photoluminescence of WS2 quantum dots for white light-emitting diodes," ACS Appl. Mater. Interfaces, Vol. 10, pp. 43824-43830, 2018. [DOI:10.1021/acsami.8b17966]
8. O.Y. Posudievsky, O.A. Khazieieva, A.S. Kondratyuk, V.V. Cherepanov, G.I.Dovbeshko, V .G. Koshechko, and V .D. Pokhodenko,"Liquid exfoliation of
9. mechanochemically nanostructured tungsten disulfide to a graphene-like state," Nanotechnology, Vol. 29, pp. 085704 (1-7), 2018. [DOI:10.1088/1361-6528/aaa381]
10. Z. Cai, B. Liu, X. Zou, H. and M. Cheng, "Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures," Chem. Rev. Vol. 118, pp. 6091-6133, 2018. [DOI:10.1021/acs.chemrev.7b00536]
11. H. Yan, J. Li, D. Liu, X. Jing, D. Wang, and L. Meng, "Controlled preparation of high quality WS 2 nanostructures by a microwave-assisted solvothermal method," Cryst. Eng. Comm. Vol. 20, pp. 2324-2330, 2018. [DOI:10.1039/C8CE00057C]
12. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, "Synthesis and optical properties of large‐area single‐ crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition," Adv. Opt. Mater. Vol. 2, pp. 131-136, 2014. [DOI:10.1002/adom.201300428]
13. N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, and T. Yu, "Thermal conductivity determination of suspended mono-and bilayer WS 2 by Raman spectroscopy," Nano Res. Vol. 8, pp. 1210-1221, 2015. [DOI:10.1007/s12274-014-0602-0]
14. M.A. Dwiputra, F. Fadhila, C. Imawan, and V. Fauzia, "The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure," Sens. Actuators B Chem. Vol. 310, pp. 127810 (1-13), 2020. [DOI:10.1016/j.snb.2020.127810]
15. D. Liu, Z. Tang, and Z. Zhang, "Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets," Sens. Actuators B Chem. Vol. 303, pp. 127114 (1-7), 2020. [DOI:10.1016/j.snb.2019.127114]
16. B. Rai, P.V. Sarma, V. Srinivasan, M.M. Shaijumon, and S.S. Ramamurthy, "Engineering of Exciton-Plasmon Coupling Using 2D-WS2 Nanosheets for 1000-Fold Fluorescence Enhancement in Surface Plasmon-Coupled Emission Platforms," Langmuir, Vol. 37, pp. 1954-1960, 2021. [DOI:10.1021/acs.langmuir.0c03465]
17. J. Li, J. Han, H. Li, X. Fan, and K. Huang, "Large-area, flexible broadband photodetector based on WS2 nanosheets films" Mater Sci Semicond Process,Vol. 107, pp. 104804 (1-6), 2020. [DOI:10.1016/j.mssp.2019.104804]
18. S.J. Varma, J. Kumar, Y. Liu, K. Layne, J. Wu, C. Liang, Y. Nakanishi, A. Aliyan, W. Yang, and P.M. Ajayan, "2D TiS2 layers: a superior nonlinear optical limiting material," Adv. Opt. Mater. Vol. 5, pp. 1700713 (1-9), 2017. [DOI:10.1002/adom.201700713]
19. J. Jadczak, L. Bryja, J. Kutrowska-Girzycka, P. Kapuściński, M. Bieniek, Y. Huang, and P. Hawrylak, "Room-temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2," SPIE OPTO, 2020, California, USA, Vol. 112980K, pp. 1-10, 2020. [DOI:10.1038/s41467-018-07994-1]
20. T. Beechem, L. Yates, and S. Graham, "Invited Review Article: Error and uncertainty in Raman thermal conductivity measurements," Rev. Sci. Instrum. Vol. 86, pp. 041101 (1-11), 2015. [DOI:10.1063/1.4918623]
21. A.A. Graf, Physical and chemical characterisation of exfoliated layered nanomaterials, PhD Diss. University of Sussex, 2020.
22. S. Sandell, E. Chavez-Angel, A. El Sachat, J. He, C.M. Sotomayor Torres, and J. Maire, "Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures," J. Appl. Phys. Vol. 128, pp. 131101 (1-25), 2020. [DOI:10.1063/5.0020239]
23. S.E. Bialkowski, N.G. Astrath, and M.A. Proskurnin, Photothermal Spectroscopy Methods, John Wiley & Sons, 2019. [DOI:10.1002/9781119279105]
24. H. Cabrera, D. Mendoza, J. Benítez, C.B. Flores, S. Alvarado, and E. Marín, "Thermal diffusivity of few-layers graphene measured by an all-optical method," J. Phys. D, Vol. 48, pp. 465501 (1-5), 2015. [DOI:10.1088/0022-3727/48/46/465501]
25. M. Proskurnin, D. Volkov, T. Gor'kova, S. Bendrysheva, A. Smirnova, and D. Nedosekin, "Advances in thermal lens spectrometry," J. Anal. Chem. Vol. 70, pp. 249-276, 2015. [DOI:10.1134/S1061934815030168]
26. A. Smirnova, M.A. Proskurnin, K. Mawatari, and T. Kitamori, "Desktop near‐field thermal‐ lens microscope for thermo‐optical detection in microfluidics," Electrophoresis, Vol. 33, pp. 2748-2751, 2012.H. Cabrera, I. Ashraf, F. Matroodi, E.E. Ramírez-Miquet, J. Akbar, J.J. Suárez-Vargas, J.B. Ramírez, D. Korte, H. Budasheva, and J. Niemela, "Photothermal lens technique: a comparison between conventional and self- mixing schemes," Laser Phys. Vol. 29, pp. 055703 (1-5), 2019. [DOI:10.1088/1555-6611/ab0a66]
27. H. Ono, K. Takeda, and K. Fujiwara, "Thermal lens produced in a nematic liquid crystal," Appl. Spectrosc. Vol. 49, pp. 1189-1192, 1995. [DOI:10.1366/0003702953965083]
28. M. Liu and M. Franko, "Thermal lens spectrometry: still a technique on the horizon?," Int. J. Thermophys. Vol. 37, pp. 1- 16, 2016. [DOI:10.1007/s10765-016-2072-y]
29. M. Galkin, Y .V . Ageeva, D. Nedosekin, M. Proskurnin, A.Y. Olenin, and G. Mokrousov, "Thermal lens spectrometry for the synthesis and study of nanocomposites on the basis of silver salts absorbed by a polyacrylate matrix," Mosc. Univ. Chem. Bull. Vol. 65, pp. 91-97, 2010. [DOI:10.3103/S0027131410020070]
30. J. Shen, R.D. Lowe, and R.D. Snook, "A model for cw laser induced mode-mismatched dual- beam thermal lens spectrometry," Chem. Phys. Vol. 165, pp. 385-396, 1992. [DOI:10.1016/0301-0104(92)87053-C]
31. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, and T. Catunda, "Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement," J. Opt. Soc. Amer. B, Vol. 23, pp. 1408-1413, 2006. [DOI:10.1364/JOSAB.23.001408]
32. M. Chowdhury, K.S. Rahman, V. Selvanathan, A.M. Hasan, M. Jamal, N.A. Samsudin, M. Akhtaruzzaman, N. Amin, and K. Techato, "Recovery of FTO coated glass substrate via environment-friendly facile recycling perovskite solar cells," RSC Adv. Vol. 11, pp. 14534-14541, 2021. [DOI:10.1039/D1RA00338K]
33. Source: Web Elements [http://www.webelements.com/]
34. S. Qiao, H. Yang, Z. Bai, G. Peng, and X. Zhang, Identifying the number of WS2 layers via Raman and photoluminescence spectrum, Atlantis Press. Pp. 1408-1413, 2017. [DOI:10.2991/icmmcce-17.2017.247]
35. A. Ahmadi, M.Z. Shoushtari, and M. Farbod, "Photoelectrochemical application of WS 2 nanosheets prepared via a low-temperature CVD method," J. Mater. Sci.: Mater. Electron. Vol. 30, pp. 6342-6349, 2019. [DOI:10.1007/s10854-019-00936-7]
36. F. Wang, Raman and Photoluminescence Spectroscopic Studies of the Micromechanics of WS2 Nanocomposites, The University of Manchester (United Kingdom), PhD Diss. 2018.
37. M. Benitez, A. Marcano, and N. Melikechi, "Thermal diffusivity measurement using the mode-mismatched photothermal lens method," Opt. Eng. Vol. 48, pp. 043604 (1-8), 2009. [DOI:10.1117/1.3119306]
38. J. Liu, G-M. Choi, and D.G. Cahill, "Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect" J. Appl. Phys. Vol. 116, pp. 233107 (1-6), 2014. [DOI:10.1063/1.4904513]
39. J.-Y. Kim, S.-M. Choi, W.-S. Seo, and W.-S. Cho, "Thermal and electronic properties of exfoliated metal chalcogenides," Bulletin Kor. Chem. Soc. Vol. 31, pp. 3225-3227, 2010. [DOI:10.5012/bkcs.2010.31.11.3225]
40. X. Zhang, D. Sun, Y. Li, G-H. Lee, X. Cui, D. Chenet, Y. You, T.F. Heinz, and J.C. Hone, "Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique," ACS Appl. Mater. Interfaces. Vol. 7, pp. 25923-25929, 2015. [DOI:10.1021/acsami.5b08580]
41. Y. Zhang, Q. Lv, A. Fan, L. Yu, H. Wang, W. Ma, X. Zhang, and R. Lv, "Substrate effect on thermal conductivity of monolayer WS2: Experimental measurement and theoretical analysis,". arXiv preprint arXiv, Vol. 2108, pp. 13252 (1-33), 2021.
42. Y. Zhang, Q. Lv, A. Fan, L. Yu, H. Wang, W. Ma, R. Lv, and X. Zhang, "Reduction in thermal conductivity of monolayer WS2 caused by substrate effect," Nano Res. pp. 1-10, 2022. [DOI:10.1007/s12274-022-4560-7]
43. R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, and H.G. Xing, "Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy," ACS Nano, Vol. 8, pp. 986-993, 2014. [DOI:10.1021/nn405826k]
44. J. Habainy, Y. Dai, Y. Lee, and S. Iyengar, "Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa," J. Nucl. Mater. Vol. 509, pp. 152-157, 2018. [DOI:10.1016/j.jnucmat.2018.06.041]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb