Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 3-8 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdizadeh Rokhi M, Asgari A. Investigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots. IJOP 2022; 16 (1) :3-8
URL: http://ijop.ir/article-1-479-en.html
1- Department of Physics, University of Tabriz, Tabriz, Iran. &Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
2- Department of Physics, University of Tabriz, Tabriz, Iran.&Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran.&School of Electrical, Electronic and Computer Engineering, University of Western, Australia, Crawley, WA 6009, Australia
Abstract:   (722 Views)
In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to solve three-dimensional Schrodinger equations and traveling-wave equations. The spectral width of the gain spectrum in each case has been investigated. Eliminating the non-radiative recombination, non-radiative spontaneous emission coefficient and Auger recombination coefficients increased the output power of SLED and in some cases reduced the negative effect of temperature increase on output power.
Full-Text [PDF 348 kb]   (245 Downloads)    
Type of Study: Research | Subject: Nanophotonics and Nanostructures
Received: 2021/12/14 | Revised: 2022/06/19 | Accepted: 2022/06/21 | Published: 2022/12/23

1. A. Kafar, S. Stanczyk, D. Schiavon, T. Suski, and P. Perlin, "Review on Optimization and Current Status of (Al, In) GaN Superluminescent Diodes," ECS J. Solid State Science Technol., Vol. 9, pp. 015010 (1-8), 2019. [DOI:10.1149/2.0282001JSS]
2. Purnima D. L. Greenwood, et al, Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots, IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 15, No. 3, (2009). [DOI:10.1109/JSTQE.2009.2013481]
3. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt, 9(1): 47 (2004). [DOI:10.1117/1.1629679]
4. Romain Beal, Laser induced quantum well intermixing: reproducibility study and fabrication of superluminscent diodes interdiffusion depuits quantiques induite par laser etude de la reproductibilite fabrication de diodes superluminscent, PhD Thesis, (2015).
5. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Vélez, Improved emission spectrum from quantum dot super-luminescent light emitting diodes, phys. stat. sol. (b), 243, No. 15, 3988 - 3992 (2006). [DOI:10.1002/pssb.200671527]
6. Marco Rossetti, Lianhe Li, Alexander Markus, Andrea Fiore, Lorenzo Occhi, Christian Vélez, Sergey Mikhrin, Igor Krestnikov, and Alexey Kovsh, Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Super-luminescent Diodes Emitting at 1.2-1.3μm, IEEE Journalof Quantum electronics, vol. 43, No. 8, (2007). [DOI:10.1109/JQE.2007.901589]
7. Sasi S. Sundaresan, Vamsi M. Gaddipati, and Shaikh S. Ahmed,Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atom sp3d5s tight-binding simulations, International Journal Of Numerical Modeling: Electronic Networks, devices and fields Int. J. Number. Model. (2014). [DOI:10.1002/jnm.2008]
8. Marco Rossetti, et al, Quantum Dot Superluminescent Diodes Emitting at 1.3 µm, IEEE Photonics Technology Letters, Vol. 17, No. 3, (2005). [DOI:10.1109/LPT.2004.840997]
9. Marco Rossetti, Lianhe Li, Andrea Fiore, Lorenzo Occhi, Christian Vélez, Sergey Mikhrin, and Alexey Kovsh, High-Power Quantum-Dot Superluminescent Diodes With p-Doped Active Region, IEEE Photonics Technology Letters, VOL. 18, NO. 18, (2006). [DOI:10.1109/LPT.2006.882303]
10. Z. Y. Zhang, et al, Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and super-luminescent light-emitting diodes, Applied Physics Letters 91, 081112 ,(2007). [DOI:10.1063/1.2772845]
11. E.V. Andreeva, A.E. Zhukov, V.V. Prokhorov, V.M. Ustinov, S.D. Yakubovich, Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100, 1230-nm spectral range, Quantum Electronics 36 (6) 527, 531 (2006). [DOI:10.1070/QE2006v036n06ABEH013229]
12. Siming Chen, et al, GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures, Nanoscale Research Letters (2015).
13. Mozhgan Mahdizadeh Rokhi, Asghar Asgari, Power improvement in ridge bent waveguide superluminescent light-emitting diodes based on GaN quantum dots, Physica Scripta, accepted manuscript, (2021). [DOI:10.1088/1402-4896/ac33fc]
14. J. Park, X. Li and W.-P. Huang, Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers, IEE Proc.-Optoelectron., Vol. 152, No. 3( 2005). [DOI:10.1049/ip-opt:20045034]
15. Seyed M Sadeghi ,Waylin J Wing, Rithvik R Gutha, Christina Sharp, Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms, Nanotechnology, 29(1):015402, (2018). [DOI:10.1088/1361-6528/aa9a1c]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb