Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 187-196 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bani M A, Nazeri M, Sajedi Bidgoli A. Investigation of the Negative Effect of the Surrounding Dielectric on the Antenna on the Spectral Response of the THz Antenna Detector. IJOP. 2021; 15 (2) :187-196
URL: http://ijop.ir/article-1-472-en.html
1- Department of Physics, University of Kashan, Kashan, Iran
Abstract:   (345 Views)
In this paper, the frequency response of a detector antenna is investigated when a layer of dielectric is placed on it. For this purpose, the surface wave theory has been used to explain the propagation of the current pulses in the antenna electrodes. Examinations are also performed of the propagation spectra of two types of terahertz antennas, bow-tie and dipole (with LT-GaAs substrates), on which the dielectrics of gallium arsenide and silica are located. These antennas are simulated through the CST software (FDTD method). The simulations show that the presence of a surrounding dielectric on the surface of an antenna affects the velocity of the current pulse propagation on the electrodes. It is also shown that the change in the thickness and position of the surrounding dielectric have a negative effect on quality of detector antenna by shift its spectral response to lower frequencies.
Full-Text [PDF 1532 kb]   (80 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/10/24 | Revised: 2022/02/12 | Accepted: 2022/02/20 | Published: 2022/03/11

References
1. K.E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. Terahertz Spectroscopy and Imaging, Vol. 171, Springer, 2012. [DOI:10.1007/978-3-642-29564-5]
2. S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications, CRC press, 2017. [DOI:10.1201/9781420007701]
3. J.H. Son, ed. Terahertz Biomedical Science and Technology, CRC Press, 2014. [DOI:10.1201/b17060]
4. J. Neu and C.A. Schmuttenmaer, "Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)," J. Appl. Phys. Vol. 124, pp. 231101 (1-14), 2018. [DOI:10.1063/1.5047659]
5. M. Singh and S. Singh, "Design and Performance Investigation of Miniaturized Multi‐Wideband Patch Antenna for Multiple Terahertz Applications," Photon. Nanostructures-Fundamentals Appl. Vol. 44, pp. 100900 (1-10), 2021. [DOI:10.1016/j.photonics.2021.100900]
6. D. Turan, N.T. Yardimci, P.K. Lu, and M. Jarrahi, "Terahertz Generation through Bias-free Telecommunication Compatible Photoconductive Nanoantennas over a 5 THz Radiation Bandwidth," 2020 IEEE/MTT-S International Microwave Symposium (IMS), IEEE, pp. 87-90, 2020. [DOI:10.1109/IMS30576.2020.9224081]
7. E.N.F. Boby, V. Rathinasamy, T.R. Rao, and S. Mondal, "Parametric Analysis of Inter-combed Photoconductive Antenna for Terahertz Communication," 2021 International Conference on Communication information and Computing Technology (ICCICT), IEEE, pp. 1-4, 2021.
8. J. Zhang, "Characterization of the terahertz photoconductive antenna by three-dimensional finite-difference time-domain method," arXiv preprint arXiv:1406.3872, 2014.
9. M. Nazeri and R. Massudi, "Study of a large-area THz antenna by using a finite difference time domain method and lossy transmission line," Semiconductor Science Technol. Vol. 25, pp. 045007 (1-7), 2010. [DOI:10.1088/0268-1242/25/4/045007]
10. S.G. Park, K.H. Jin, M. Yi, J.C. Ye, J. Ahn, and K.H. Jeong, "Enhancement of terahertz pulse emission by optical nanoantenna," ACS Nano, Vol. 6, pp. 2026-2031, 2012. [DOI:10.1021/nn204542x] [PMID]
11. M. Koohi and M. Neshat, "Evaluation of graphene-based terahertz photoconductive antennas," Scientia Iranica. Transaction F, Nanotechnology, Vol. 22, pp. 1299-1305, 2015.
12. M. Nazeri and A. Sajedi Bidgoli, "Change of terahertz antenna spectrum when surrounding dielectric alters," Optik, Vol. 183, pp. 650-655, 2019. [DOI:10.1016/j.ijleo.2019.02.151]
13. C.W. Berry, M.R. Hashemi, and M. Jarrahi, "Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas," Appl. Phys. Lett. Vol. 104, pp. 081122 (1-5), 2014. [DOI:10.1063/1.4866807]
14. N.I. Cabello, A. De Los Reyes, V. Sarmiento, J.P. Ferrolino, V.D.A. Vistro, J.D. Vasquez, H. Bardolaza, H. Kitahara, M. Tani, A. Salvador, and A. Somintac, "Terahertz Emission Enhancement of Gallium-Arsenide-Based Photoconductive Antennas by Silicon Nanowire Coating," IEEE Trans. Terahertz Science Technol. Vol. 12, pp. 36-41, 2021. [DOI:10.1109/TTHZ.2021.3115726]
15. P. Sharma, M. Kumar, V.P.S. Awana, A. Singh, H. Gohil, and S.S. Prabhu, "Comprehensive analysis of Terahertz frequency response of Bi2Se3 and Bi2Te3 single crystals using Terahertz time-domain spectroscopy," Mater. Sci. Eng. B, Vol. 272, pp. 115355 (1-6), 2021. [DOI:10.1016/j.mseb.2021.115355]
16. M.A. Unutmaz and M. Unlu, "Terahertz spoof surface plasmon polariton waveguides: a comprehensive model with experimental verification," Scientific Reports, Vol. 9, pp. 1-8, 2019. [DOI:10.1038/s41598-019-44029-1] [PMID] [PMCID]
17. F. Neubrech, M. Hentschel, and N. Liu, "Reconfigurable plasmonic chirality: fundamentals and applications," Adv. Mater. Vol. 32, pp. 1905640 (1-7), 2020. [DOI:10.1002/adma.201905640] [PMID]
18. M. Nazeri and H. Abbasi, "Study of terahertz antenna by surface wave theory," Iranian J. Sci. Technol. Trans. A: Science, Vol. 41, pp. 1055-1061, 2017. [DOI:10.1007/s40995-017-0333-7]
19. G.Q. Liao and Y.T. Li, "Review of intense terahertz radiation from relativistic laser-produced plasmas," IEEE Trans. Plasma Science, Vol. 47, pp. 3002-3008, 2019. [DOI:10.1109/TPS.2019.2915624]
20. M. Janipour, I.B. Misirlioglu, and K. Sendur, "A theoretical treatment of THz resonances in semiconductor GaAs p-n junctions," Mater. Vol. 12, pp. 2412 (1-14), 2019. [DOI:10.3390/ma12152412] [PMID] [PMCID]
21. S. Pandey, B. Gupta, A. Chanana, and A. Nahata, "Non-Drude like behavior of metals in the terahertz spectral range," Adv. Phys.: X, Vol. 1, pp. 176-193, 2016. [DOI:10.1080/23746149.2016.1165079]
22. F. Sanjuan and J.O. Tocho, "Optical properties of silicon, sapphire, silica and glass in the Terahertz range," Latin America Optics and Photonics Conference, Optical Society of America, pp. LT4C-1, 2012. [DOI:10.1364/LAOP.2012.LT4C.1]
23. K. Maussang, A. Brewer, J. Palomo, J.M. Manceau, R. Colombelli, I. Sagnes, J. Mangeney, J. Tignon, and S.S. Dhillon, "Echo-less photoconductive antenna sources for high-resolution terahertz time-domain spectroscopy," IEEE Trans. Terahertz Science Technol. Vol. 6, pp. 20-25, 2015. [DOI:10.1109/TTHZ.2015.2504794]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb