Fri, Jan 28, 2022
**[Archive]**

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Daeimohammad M. Dynamic of Two-Level System in the F-Deformed Jaynes-Cummings Model Beyond the Rotating-Wave Approximation. IJOP. 2021; 15 (1) :73-92

URL: http://ijop.ir/article-1-451-en.html

URL: http://ijop.ir/article-1-451-en.html

Type of Study: Research |
Subject:
Special

Received: 2021/03/3 | Revised: 2021/06/25 | Accepted: 2021/08/25 | Published: 2021/12/30

Received: 2021/03/3 | Revised: 2021/06/25 | Accepted: 2021/08/25 | Published: 2021/12/30

1. H. Walter, B.T.H. Varcoe, B.G. Englert, and T. Becker, "Cavity quantum electro dynamics," Reports Progress Phys. Vol. 69, pp. 1325-1382, 2006. [DOI:10.1088/0034-4885/69/5/R02]

2. A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation," Phys. Rev. A, Vol. 69, pp. 062320 (1-14), 2004. [DOI:10.1103/PhysRevA.70.019901]

3. I.I. Rabi, "Space Quantization in a Gyrating Magnetic Field," Phys. Rev, Vol. 49, pp. 324-328, (1936); Vol. 51, pp. 652-654, 1937. [DOI:10.1103/PhysRev.51.652]

4. E.T. Jaynes and F.W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE, Vol. 51, pp. 89-109, 1963. [DOI:10.1109/PROC.1963.1664]

5. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms, Dover Publications, 1987.

6. G.S. Agarwal and R.R. Puri, "Exact quantum-electrodynamics results for scattering, emission, and absorption from a Rydberg atom in a cavity with arbitrary Q," Phys. Rev. A, Vol. 33, pp. 1757-1764, 1986. [DOI:10.1103/PhysRevA.33.1757] [PMID]

7. S.N. Barnett and P.L. Knight, "Dissipation in a fundamental model of quantum optical resonance," Phys. Rev. A, Vol. 33, pp. 2444-2448, 1986. [DOI:10.1103/PhysRevA.33.2444] [PMID]

8. J. Eislet and H. Risken, "Quasiprobability distributions for the cavity-damped Jaynes-Cummings model with an additional Kerr medium," Phys. Rev. A. Vol. 43, pp. 346-356, 1991. [DOI:10.1103/PhysRevA.43.346] [PMID]

9. M.J. Werner and H. Risken, "Quasiprobability distributions for the cavity-damped Jaynes-Cummings model with an additional Kerr medium," Phys. Rev. Vol. 44, pp. 4623-4632, 1991. [DOI:10.1103/PhysRevA.44.4623] [PMID]

10. J.G. Peixoto de Faria and M.C. Nemes, "Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: Analytical results," Phys. Rev. A, Vol. 59, pp. 3918-3925, 1999. [DOI:10.1103/PhysRevA.59.3918]

11. M. Boissonneault, J.M. Gambetta, and A. Blais, "Nonlinear dispersive regime of cavity QED: The dressed dephasing model," Phys. Rev. A. Vol. 77, pp. 060305(1-4), 2008. [DOI:10.1103/PhysRevA.77.060305]

12. H.J. Carmichael and D.F. Walls, "Modifications to the Scully-Lamb laser master equation," J. Phys. A, Vol. 6, pp. 1552-1564, 1973. [DOI:10.1088/0305-4470/6/10/014]

13. J.D. Cresser, "Thermal equilibrium in the Jaynes-Cummings model," J. Mod. Opt. Vol. 39, pp. 2187-2192, 1992. [DOI:10.1080/09500349214552211]

14. H. Zoubi, M. Orenstien, and A. Ron, "Coupled micro cavities with dissipation," Phys. Rev. A. Vol. 62, pp. 033801 (1-10), 2000. [DOI:10.1103/PhysRevA.62.033801]

15. M. Scala, B. Militello, A. Messina, J. Piilo, and S. Maniscalco, "Microscopic derivation of the Jaynes-Cummings model with cavity losses," Phys. Rev. A, Vol. 75, pp. 013811 (1-8), 2007. [DOI:10.1103/PhysRevA.75.013811]

16. F. Beaudoin, J.M. Gambetta, and A. Blais, "Dissipation and ultrastrong coupling in circuit QED," Phys. Rev. A, Vol. 84, pp. 043832 (1-15), 2011. [DOI:10.1103/PhysRevA.84.043832]

17. C.W. Duncan and A. del. Campo, "Shortcuts to Adiabaticity Assisted by Counter adiabatic Born-Oppenheimer Dynamics," New J. Phys. Vol. 20, pp. 085003 (1-14), 2018. [DOI:10.1088/1367-2630/aad437]

18. M.H. Naderi, "The Jaynes-Cummings model beyond the rotating-wave approximation as an intensity-dependent model: quantum statistical and phase properties," J. Phys. A: Math. Theor. Vol. 44, pp. 055304 (1-20). 2011. [DOI:10.1088/1751-8113/44/5/055304]

19. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, H. Hocke, M.J. Schwarz, J.J. García-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, "Circuit Quantum Electrodynamics in the Ultra-strong-coupling Regime," Nature Phys. Vol. 6, pp. 772-776, 2010. [DOI:10.1038/nphys1730]

20. P. Forn-Diaz, J. Lisenfeld, D. Marcos, J.J. Garcia-Ripoll, E. Solano, C.J.P.M. Harmans, and J.E. Mooij, "Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime," Phys. Rev. Lett. Vol. 105, pp. 237001 (1-4), 2010. [DOI:10.1103/PhysRevLett.105.237001] [PMID]

21. A. Fedorov, A.K. Feofanov, P. Macha, P. Forn-Diaz, C.J.P.M. Harmans, and J.E. Mooij, "Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point," Phys. Rev. Lett. Vol. 105, pp. 060503 (1-4), 2010. [DOI:10.1103/PhysRevLett.105.060503] [PMID]

22. J. Hausinger and M. Grifoni,"Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond therotating wave approximation," New J. Phys. Vol. 10, pp. 115015 (1-39), 2008. [DOI:10.1088/1367-2630/10/11/115015]

23. S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti, "Extracavity quantum vacuum radiation from a single qubit," Phys. Rev. Lett. Vol. 80, pp. 053810 (1-5), 2009. [DOI:10.1103/PhysRevA.80.053810]

24. X. Cao, J.Q. You, H. Zheng, and F. Nori, "A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation," New J. Phys. Vol. 13, pp. 073002 (1-12), 2011. [DOI:10.1088/1367-2630/13/7/073002]

25. A. Ridolfo, M. Leib, S. Savasta, and M.J. Hartmann, "Photon Blockade in the Ultrastrong Coupling Regime," Phys. Rev. Lett. Vol, 109, pp. 193602 (1-7), 2012. [DOI:10.1103/PhysRevLett.109.193602] [PMID]

26. B. Buck and C.V. Sukumar,"Multi-phonon generalisation of the Jaynes-Cummings model," Phys. Lett. A, Vol. 81, pp. 132-135, 1981. [DOI:10.1016/0375-9601(81)90042-6]

27. V. Buzek, "Jaynes-Cummings model with intensity-dependent coupling interacting with Holstein-Primakoff SU(1,1) coherent state," Phys.Rev. A, Vol. 39, pp. 3196-3199, 1989. [DOI:10.1103/PhysRevA.39.3196] [PMID]

28. M. Chaichian, D. Ellinas, and P. Kulish, "Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model," Phys. Rev. Lett. Vol. 65, pp. 980-983, 1990. [DOI:10.1103/PhysRevLett.65.980] [PMID]

29. B.W. Shore and P. Knight, "The Jaynes-Cummings Model," J. Mod. Opt. Vol. 40, pp. 1195-1238, 1993. [DOI:10.1080/09500349314551321]

30. Z. Tang, "Approach to a generalized Jaynes model and the geometric phase," Phys. Rev. A, Vol 52, pp. 3448-3451, 1995. [DOI:10.1103/PhysRevA.52.3448] [PMID]

31. A.A. Budini, R.L. de Matos Filho, and N. Zagury, "Dissipation and decoherence in the generalized Jaynes-Cummings model," Phys. Rev. A, Vol. 67, pp. 0338 15 (1-21), 2003. [DOI:10.1103/PhysRevA.67.033815]

32. A. Messina, S. Maniscalco, and A. Napoli, "Interaction of bimodal fields with few-level atoms in cavities and traps," J. Mod. Opt. Vol. 50, pp. 1-49, 2003. [DOI:10.1080/09500340308234530]

33. M. Abdel-Aty "Mixed-state entanglement of a three-level system with an intensity-dependent interaction," J. Phys. A: Math. Gen, Vol. 37, pp. 1759-1773, 2004. [DOI:10.1088/0305-4470/37/5/020]

34. M.H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, "Dynamical Properties of a Two-Level Atom in Three Variants of the Two-Photon q-Deformed Jaynes-Cummings Model," J. Phys. Soc. Jpn. Vol. 73, pp. 2413-2423, 2004. [DOI:10.1143/JPSJ.73.2413]

35. M.H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, "A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model," Eur. Phys. J. D, Vol. 32, pp. 397-408, 2005. [DOI:10.1140/epjd/e2004-00197-8]

36. R.L. de Matos Filho, and W. Vogel, "Nonlinear coherent states," Phys. Rev. A, Vol. 54, PP. 4560-4563, 1996. [DOI:10.1103/PhysRevA.54.4560] [PMID]

37. H. Grinberg, "Beyond the rotating wave approximation. An intensity dependent nonlinear coupling model in two-level systems," Phys. Lett. A, Vol. 374, pp. 1481-1487, 2010. [DOI:10.1016/j.physleta.2010.01.047]

38. M. Jimbo, "A q difference analog of U(g) and the Yang-Baxter equation," Lett. Math. Phys, Vol. 10, pp. 63-69,1985. [DOI:10.1007/BF00704588]

39. A.J. Macfarlane, "On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)," J. Phys. A: Math. Gen. Vol. 22, pp. 4581-4589, 1989. [DOI:10.1088/0305-4470/22/21/020]

40. J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, "Dynamical model of deformed coherent states for multiplicity distributions and correlations," Phys. Lett. B, Vol. 318, pp. 227-230, 1993. [DOI:10.1016/0370-2693(93)91811-Z]

41. V. Buzek, "Jaynes-Cummings model with intensity-dependent coupling interacting with Holstein-Primakoff SU(1,1) coherent state," Phys. Rev. A. Vol. 39, pp. 3196-3199, 1989. [DOI:10.1103/PhysRevA.39.3196] [PMID]

42. M. Chaichian, D. Ellinas, and P. Kulish, "Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model," Phys. Rev. Lett. Vol. 65, pp. 980-983, 1990. [DOI:10.1103/PhysRevLett.65.980] [PMID]

43. M. Arik and D.D. Coon, "Hilbert spaces of analytic functions and generalized coherent states," J. Math. Phys. Vol. 17, pp. 524-527, 1976. [DOI:10.1063/1.522937]

44. D. Bonatsos, C. Daskaloyannis, and G.A. Lalazissis, "Unification of Jaynes-Cummings models," Phys. Rev. A, Vol. 47, pp. 3448-3451, 1993. [DOI:10.1103/PhysRevA.47.3448] [PMID]

45. A. Dehghani, B. Mojaveri, S. Shirin, and S. Amiri Faseghandis, "Parity Deformed Jaynes-Cummings Model Robust Maximally Entangled States," Sci. Rep. Vol. 10, pp. 1038-1053, 2016. [DOI:10.1038/srep38069] [PMID] [PMCID]

46. R.L. de Matos Filho and W. Vogel, "Nonlinear coherent states," Phys. Rev. A, Vol. 54, pp. 4560-4563,1996. [DOI:10.1103/PhysRevA.54.4560] [PMID]

47. V.I. Monko, G. Marmo, E.C.G. Sudarshan, and F. Zaccaria, "Oscillators and Nonlinear Coherence States," Phys. Scr. Vol. 55, pp. 528-566, 1997. [DOI:10.1088/0031-8949/55/5/004]

48. P.P. Munhoz and A. Vidiealla-Barronco, "Non-conditioned generation of Schroedinger cat states in a cavity," J. Mod. Opt. Vol. 52, pp. 1557-1573, 2005. [DOI:10.1080/09500340500058116]

49. J. Batouli, M. El Baz, and A. Maaouni, "RLC circuit realization of a q- deformed harmonic oscillator with time dependent mass," Phys. Lett. A, Vol. 13, PP. 1619-1626, 2015. [DOI:10.1016/j.physleta.2015.04.036]

50. M.H. Naderi, M. Soltanolkotabi, "Influence of nonlinear quantum dissipation on the dynamical properties of the f-deformed Jaynes-Cummings model in the dispersive limit," Eur. Phys. J. D, Vol. 39, pp. 471-479, 2006. [DOI:10.1140/epjd/e2006-00136-9]

51. M. Daeimohammad, F. Kheirandish, and M.R. Abolhasany, "Quantum Dynamics of a Dissipative Deformed Harmonic Oscillator," Int. J. Theor. Phys. Vol. 48, pp. 693-699, 2009. [DOI:10.1007/s10773-008-9845-4]

52. M. Daeimohammad, "Quantum dynamics of a two-mode f-deformed cavity field in a heat bath," Phys. Scr, Vol. 86, pp.065006 (1-7), 2012. [DOI:10.1088/0031-8949/86/06/065006]

53. M. Daeimohammad, F. Kheirandish, and K. Saeedi, "Quantum Dynamics of a Harmonic Oscillator in a Deformed Bath," Int. J. Theor. Phys. Vol. 50, pp. 171-180, 2011. [DOI:10.1007/s10773-010-0505-0]

54. M. Daeimohammad, "Influence of the counter-rotating terms on the quantum dynamics of the damped harmonic oscillator in a deformed bath," Int. J. Mod. Phys. B, Vol. 33, pp. 1950126 (1-13), 2019. [DOI:10.1142/S0217979219501261]

55. S.C. Gou, "Quantum behavior of a two-level atom interacting with two modes of light in a cavity," Phys. Rev. A, Vol. 40, pp. 5116-5128, 1989. [DOI:10.1103/PhysRevA.40.5116] [PMID]

56. B. Buck and C. V. Sukumar, "Exact results for the emission from one and two atoms in an ideal cavity at multiphoton resonance," J. Phys. A: Math. Gen. Vol. 17, pp. 885-894, 1984.

57. S.S. Sharma, N. K. Sharma, and L. Zamick, "Single two-level ion in an anharmonic-oscillator trap: Time evolution of the Q function and population inversion," Phys. Rev. A, Vol. 56, pp. 694-699, 1997. [DOI:10.1103/PhysRevA.56.694]

58. J. Wei and E. Norman, "Lie Algebraic Solution of Linear Differential Equations," J. Math. Phys. (N.Y.), Vol. 4, pp. 575-581, 1 963. [DOI:10.1063/1.1703993]

59. M.H. Naderi, "Intrinsic decoherence effects on quantum dynamics of the nondegenerate two-photon f-deformed Jaynes-Cummings model governed by the Milburn equation," Can. J. Phys. Vol. 85, pp. 1071-1096, 2007. [DOI:10.1139/p07-097]

60. H.I. Yoo, J.J. Sanchez-Mondragon, and J. H. Eberly, "Non-linear dynamics of the fermion-boson model: interference between revivals and the transition to irregularity," J. Phys. A, Vol. 14, pp. 1383-1397, 1981. [DOI:10.1088/0305-4470/14/6/015]

61. D. Meschede, H. Walther, and G. Muller, "One-Atom Maser," Phys. Rev. Lett. Vol. 54, pp. 551-554, 1985. [DOI:10.1103/PhysRevLett.54.551] [PMID]

62. S.M. Barnett, "General criterion for squeezing," Opt. Commun. Vol. 61, pp.432-466, 1987. [DOI:10.1016/0030-4018(87)90205-7]

63. W.H. Zurek, S. Habib, and J.P. Paz, "Coherent states via decoherence," Phys. Rev. Lett. Vol. 70, pp. 1187-1190, 1993. [DOI:10.1103/PhysRevLett.70.1187] [PMID]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |