Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 141-150 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saghi Z. Investigation of Total Energy Density and Power Flow for Propagating Modes of Square-Core Optical Fiber. IJOP 2021; 15 (2) :141-150
URL: http://ijop.ir/article-1-443-en.html
Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Abstract:   (1302 Views)
Square-core optical fiber is one of the modern optical fibers used in many fields such as astronomical spectroscopy, laser cutting and thermal applications of lasers and beam shaping optics. In this paper, an optical fiber that has a square core with a side of 55 µm is designed for propagating laser light at a wavelength of 1060 nm. Then, using numerical analysis by finite element method (FEM), the distribution of electric and magnetic fields with different polarizations and magnetizations is analyzed for the first three propagating modes of the optical fiber. In the following, the changes of total energy density and power flow are investigated. Finally, the results of the figures and plots are discussed completely.
Full-Text [PDF 323 kb]   (359 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/01/11 | Revised: 2021/05/20 | Accepted: 2021/05/20 | Published: 2022/06/22

1. A.G. Chynoweth, "The fiber lightguide," Phys. Today, Vol. 29, pp. 28-37, 1976. [DOI:10.1063/1.3023469]
2. N. Niizeki, "Recent progress in glass fibers for optical communication," Jpn. J. Appl. Phys, Vol. 20, No. 8, pp. 1347-1360, 1981. [DOI:10.1143/JJAP.20.1347]
3. A.V. Bourdine, V.A. Burdin, V. Janyani, A.K. Ghunawat, G. Singh, and A.E. Zhukov, "Design of silica multimode optical fibers with extremely enlarged core diameter for laser-based multi-gigabit short-range optical networks," Photonics, Vol. 5, No. 37, pp. 1-22, 2018. [DOI:10.3390/photonics5040037]
4. E. Rawson and R. Metcalfe, "Fibernet: Multimode optical fibers for local computer networks," IEEE. Trans. Commun, Vol. 26, No. 7, pp. 983-990, 1978. [DOI:10.1109/TCOM.1978.1094189]
5. A. Katzir, Lasers and Optical Fibers in Medicine, Academic Press, 1993. [DOI:10.1016/B978-0-08-092397-0.50010-8]
6. G.v. Bally, E. Brune, and W. Mette, "Holographic endoscopy with gradient-index optical imaging systems and optical fibers," Appl. Optics, Vol. 25, No. 19, pp. 3425-3429, 1986. [DOI:10.1364/AO.25.003425] [PMID]
7. A.K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G.U.R-Esparza, A. Tamayol, Y.S. Zhang, I. Mahmood, S-A. Yang, K.S. Kim, H. Butt, A. Khademhosseini, and S-H. Yun, "Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid," Adv. Mater. Vol. 29, pp. 1606380 (1-11), 2017. [DOI:10.1002/adma.201606380] [PMID] [PMCID]
8. Z. Liu, Z.F. Zhang, H-Y. Tam, and X. Tao, "Multifunctional smart optical fibers: materials, fabrication, and sensing applications," Photonics, Vol. 6, No. 48, pp. 1-24, 2019. [DOI:10.3390/photonics6020048]
9. C. Wang and K. Shida, "A multifunctional double-fiber type distributed optical fiber sensor," Jpn. J. Appl. Phys, Vol. 46, No. 2, pp. 852-855, 2007. [DOI:10.1143/JJAP.46.852]
10. S. Addanki, I.S. Amiri, and P. Yupapin, "Review of optical fibers-introduction and applications in fiber lasers," Results. Phys. Vol. 10, pp. 743-750, 2018. [DOI:10.1016/j.rinp.2018.07.028]
11. M. Tsuji, N. Nishizawa, and Y. Kawata, "Compact and high-power mode-locked fiber laser for three-dimensional optical memory," Jpn. J. Appl. Phys, Vol. 47, pp. 5797-5799, 2008. [DOI:10.1143/JJAP.47.5797]
12. R. Isago, S. Domae, D. Koyama, K. Nakamura, and S. Ueha, "High-frequency optical scanner based on bending vibration of optical fiber," Jpn. J. Appl. Phys, Vol. 45, No. 5B, pp. 4773-4779, 2006. [DOI:10.1143/JJAP.45.4773]
13. N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, "Observation of topography and optical image of optical fiber end by atomic force mode scanning near-field optical microscope," Jpn. J. Appl. Phys, Vol. 34, pp. 321-324, 1995. [DOI:10.1143/JJAP.34.321]
14. C-H. Tien, H-L. Chou, Y. Chiu, W. Hsu, T.D. Milster, Y-C. Lai, and H-P.D. Shieh, "Fiber-lens-based module for optical recording applications," Jpn. J. Appl. Phys, Vol. 42, pp. 4345-4348, 2003. [DOI:10.1143/JJAP.42.4345]
15. T. Suzuki, "Interferometric uses of optical fiber," Jpn. J. Appl. Phys, Vol. 5, pp. 1065-1074, 1966. [DOI:10.1143/JJAP.5.1065]
16. T.H. Tuan, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, "Characterization of an all-solid disordered tellurite glass optical fiber and its NIR optical image transport," Jpn. J. Appl. Phys, Vol. 58, pp. 032005 (1-8), 2019. [DOI:10.7567/1347-4065/aaf926]
17. K. Ito and J-i. Sakai, "Comparative study of direct image transmission through various optical fibers using the phase-conjugate wave," Jpn. J. Appl. Phys. Vol. 46, pp. 5172-5177, 2007. [DOI:10.1143/JJAP.46.5172]
18. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct photolithography on optical fiber end," Jpn. J. Appl. Phys. Vol. 41, pp. 4350-4355, 2002. [DOI:10.1143/JJAP.41.4350]
19. S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, "Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement," Jpn. J. Appl. Phys. Vol. 51, pp. 04DG14 (1-4), 2012. [DOI:10.7567/JJAP.51.04DG14]
20. M. Ohki, N. Shima, and T. Shiosaki, "Measurement of piezoelectric vibration using optical fiber," Jpn. J. Appl. Phys. Vol. 31, pp. 105-107 1992. [DOI:10.7567/JJAPS.31S1.105]
21. P.D. Dragic, M. Cavillon, and J. Ballato, "Materials for optical fiber lasers: A review," Appl. Phys. Rev. Vol. 5, pp. 041301 (1-37), 2018. [DOI:10.1063/1.5048410]
22. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, New Jersey, 2007.
23. M. Tateda and M. Ikeda, "Mode conversion in bent step index multimode fibers," Appl. Optics, Vol. 15, No. 10, pp. 2308-2310, 1976. [DOI:10.1364/AO.15.002308] [PMID]
24. R.A. Potyrailo, V.P. Ruddy, and G.M. Hieftje, "Kramers-Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers," Appl. Optics, Vol. 35, No. 21, pp.4102-4111, 1996. [DOI:10.1364/AO.35.004102] [PMID]
25. B.S. Kawasaki and K.O. Hill, "Low-loss access coupler for multimode optical fiber distribution networks," Appl. Optics, Vol. 16, No. 7, pp.1794-1795, 1977. [DOI:10.1364/AO.16.001794] [PMID]
26. D.R. Gabardi and D.L. Shealy, "Coupling of domed light-emitting diodes with a multimode step-index optical fiber," Appl. Opt. Vol. 25, No. 19, pp.3435-3442, 1986. [DOI:10.1364/AO.25.003435] [PMID]
27. S. Morris, C. McMillen, T. Hawkins, P. Foy, J. Ballato, and R. Rice, "The influence of core geometry on the crystallography of silicon optical fiber," J. Cryst. Growth, Vol. 352, No. 1, pp.53-58, 2012. [DOI:10.1016/j.jcrysgro.2011.12.009]
28. F.M. Dickey, S.C. Holswade, and D.L. Shealy, Laser Beam Shaping Applications, CRC Press, 2005. [DOI:10.1201/9781420028065.ch8]
29. O. Blomster and M. Blomqvist, "Square formed fiber optics for high power applications," in Proc. 4th Int. WLT-Conf. Lasers, 5, 2007.
30. F. Schuberts, A. Hoben, K. Bakhshpour, and C. Provost, "Square fibers solve multiple application challenges," Photonic Spectra, Vol. 45, No. 2, pp.38-41, 2011.
31. Y. Yan, L. Zhang, J. Wang, J-Y. Yang, I.M. Fazal, N. Ahmed, A.E. Willner, and S.J. Dolinar, "Fiber structure to convert a Gaussian beam to higherorder optical orbital angular momentum modes," Opt. Lett. Vol. 37, No. 16, pp.3294-3296, 2012. [DOI:10.1364/OL.37.003294] [PMID]
32. Z. Xiong, W. Chen, P. Wang, and Y. Chen, "Classification of symmetry properties of waveguide modes in presence of gain/losses anisotropy/bianisotropy, or continuous/discrete rotational symmetry," Opt. Exp., Vol. 25, No. 24, pp.29822-29834, 2017. [DOI:10.1364/OE.25.029822] [PMID]
33. T.E. Lizotte, "Laser beam uniformity and stability using homogenizer based fiber optic launch method: Square core fiber delivery," in Proc. Spie. Optical Fibers, 78940Y, 2011. [DOI:10.1117/12.881438]
34. H. Pakarzadeh, S.M. Rezaei, M. Taghizadeh and F. Bozorgzadeh, "Dispersion properties of single-mode optical fibers in telecommunication region: poly (methyl methacrylate) (PMMA) versus silica," J. Opt. Commun. doi.org/10.1515/joc-2020-0172.
35. C.A. Balanis, Advanced Engineering Electromagnetics, Wiley, New York, 1989.
36. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, 2007.
37. O.V. Butov, K.M. Golant, A.L. Tomashuk, A.H.E. Breuls, and M.J.N. Stralen, "Refractive index dispersion of doped silica for fiber optics," Opt. Commun, Vol. 213, No. 4-6, pp. 301-308, 2002. [DOI:10.1016/S0030-4018(02)02087-4]
38. R. Kitamura, L. Pilon, and M. Jonasz, "Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature," Appl. Opt. Vol. 46, No. 33, pp. 8118-8133, 2007. [DOI:10.1364/AO.46.008118] [PMID]
39. H.S. Nalwa, Silicon-Based Materials and Devices 2, Academic Press, 2001.
40. L. Mousavi, M. Sabaeian, and H. Nadgaran, "Thermally-induced birefringence in solid-core photonic crystal fiber lasers," Opt. Commun. Vol. 300, pp. 69-76, 2013. [DOI:10.1016/j.optcom.2013.03.036]
41. J. Van de Casteele, M. Bettiati, F. Laruelle, V. Cargemel, P. Pagnod-Rossiaux, P. Garabedian, L. Raymond, D. Laffitte, S. Fromy, D. Chambonnet, and J.P. Hirtz, "High reliability level on single-mode 980 nm-1060 nm diode lasers for telecommunication and industrial applications," Proc. SPIE 6876, High-Power Diode Laser Technology and Applications VI, 68760P, 2008. [DOI:10.1117/12.762943]
42. A. Pietrzak, M. Zorn, R. Huelsewede, J. Meusel, and J. Sebastian, "Development of highly efficient laser diodes emitting around 1060nm for medical and industrial applications," Proc. SPIE10900, High-Power Diode Laser Technology XVII, 109000K, 2019. [DOI:10.1117/12.2509257]
43. M. Bettiati, F. Laruelle, V. Cargemel, P. Bourdeaux, P. Pagnod-Rossiaux, P. Garabedian, J. Van de Casteele, S. Fromy, D. Chambonnet, and J. P. Hirtz, "High brightness single-mode 1060-nm diode lasers for demanding industrial applications," Proc. CLEO/Europe and IQEC, pp. CB. 19, 2007. [DOI:10.1109/CLEOE-IQEC.2007.4385965]
44. P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, B.C. Thomsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, and D.J. Richardson, "High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm," IEEE Photon. Technol. Lett. Vol. 18, pp. 1013-1015, 2006. [DOI:10.1109/LPT.2006.873486]
45. M.J. Miah, T. Kettler, K. Posilovic, V.P. Kalosha, D. Skoczowsky, R. Rosales, D. Bimberg, J. Pohl, and M. Weyers, "1.9 W continuous-wave single transverse mode emission from 1060 nm edge emitting lasers with vertically extended lasing area," Appl. Phys. Lett. Vol. 105, pp. 151105 (1-5), 2014. [DOI:10.1063/1.4898010]
46. J. Mi, H. Yu, H. Wang, S. Tan, W. Chen, Y. Ding, and J. Pan, "A GaAs-based hybrid integration of a tunneling diode and a 1060-nm semiconductor laser," IEEE Photon. Technol. Lett. Vol. 27, pp. 169-172, 2015. [DOI:10.1109/LPT.2014.2364073]
47. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications," Proc. Spie. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine, Vol. 7554, pp. 75541F (1-6), 2010. [DOI:10.1117/12.842567]
48. R. Kaufmann, A. Hartmann and R. Hibst, "Cutting and skin-ablative properties of pulsed mid-infrared laser surgery," J. Dermatol. Surg. Oncol, Vol. 20, pp. 112-118, 1994. [DOI:10.1111/j.1524-4725.1994.tb00123.x] [PMID]
49. J. Malchus, V. Krause, G. Rehmann, M. Leers, A. Koesters, and D.G. Matthews, "A 40kW fiber-coupled diode laser for material processing and pumping applications," Proc. SPIE 9348, High-Power Diode Laser Technology and Applications XIII, 934803, 2015. [DOI:10.1117/12.2083909]
50. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, "Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm," Vol. 261, pp. 114-117, 2006. [DOI:10.1016/j.optcom.2005.11.066]
51. Z. Saghi, "Investigation of magnetic energy density for fundamental mode of square-core optical fiber," In Proc. 4th Conf. Computational. Phys. Tehran, pp. 67-70, 2020.

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb