Thu, Jun 24, 2021
**[Archive]**

In this paper, an all optical graphene-based modulation approach is proposed induced by Modulation Instability (MI). The device structure is based on graphene sheets transferred on the both arms of a Mach-Zehnder interferometer to support amplified Surface Plasmon Polaritons (SPPs). Due to the nonlinear nature of MI to interfere in the modulation process, the proposed approach leads to an enhanced performance in comparison to the conventional Mach-Zehnder modulators; using a low power cw driving beam (~20 *µ*W at λ=50 *µ*m), a high speed modulation rate (~2 Tpps) and subsequently, a high depth (89%), wideband modulation (~81 GHz) can be resulted. Since the MI is a pre-state to the chaotic regime, the modulator can be also used for secure optical communication.

Type of Study: Research |
Subject:
General

Received: 2020/11/30 | Revised: 2021/01/16 | Accepted: 2021/02/23

Received: 2020/11/30 | Revised: 2021/01/16 | Accepted: 2021/02/23

1. R.W. Boyd, Nonlinear optics, Academic press, 2020.

2. H. Gibbs, Optical bistability: controlling light with light, Elsevier, 2012.

3. V.E. Zakharov and L.A. Ostrovsky, "Modulation instability: the beginning," Physica D, Vol. 238, pp. 540-548, 2009. [DOI:10.1016/j.physd.2008.12.002]

4. V.E. Zakharov and A.A. Gelash, "Nonlinear stage of modulation instability," Phys. Rev. Lett. Vol. 111, pp. 054101 (1-5), 2013. [DOI:10.1103/PhysRevLett.111.054101]

5. M.A. Sharif, "Modulation instability of optical nonlinear media, a route to chaos," IEEE. Asia Communications and Photonics Conference and Exhibition (ACP), pp. 1-8, Nov. 2011. [DOI:10.1364/ACP.2011.83080G]

6. R.P. Sharma, K. Batra, and A.D. Verga, "Nonlinear evolution of the modulational instability and chaos using one-dimensional Zakharov equations and a simplified model," Phys. Plasmas, Vol. 12, pp. 022311 (1-7), 2005. [DOI:10.1063/1.1850477]

7. M.A. Sharif, M. Borjkhani, and B. Ghafary, "Temporal modulation instability, transition to chaos in non-feedback biased photorefractive media," Opt. Commun. Vol. 319, pp. 17-24, 2014. [DOI:10.1016/j.optcom.2013.12.064]

8. J.M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, "Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation," Opt. Express, Vol. 17, pp. 21497-21508, 2009. [DOI:10.1364/OE.17.021497]

9. A. Demircan and U. Bandelow, "Supercontinuum generation by the modulation instability," Opt. Commun. Vol. 244, pp. 181-185, 2005. [DOI:10.1016/j.optcom.2004.09.049]

10. M. Conforti, A. Mussot, A. Kudlinski, and S. Trillo, "Modulational instability and pulse generation in dispersion oscillating fiber ring cavities," J. Opt. Soc. Am. Vol. 27, pp. NTh4A.3, 2014. [DOI:10.1364/NP.2014.NTh4A.3]

11. D.Y. Tang, S. Fleming, W.S. Man, H.Y. Tam, and M.S. Demokan, "Subsideband generation and modulational instability lasing in a fiber soliton laser," J. Opt. Soc. Am. B, Vol. 18, pp. 1443-1450, 2011. [DOI:10.1364/JOSAB.18.001443]

12. S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M. Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, and M. De Rosa, "Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator," Phys. Rev. Lett, Vol. 121, pp. 093903 (1-19), 2018. [DOI:10.1103/PhysRevLett.121.093903]

13. R. Haldar, A. Roy, P. Mondal, V. Mishra, and S.K. Varshney, "Free-carrier-driven Kerr frequency comb in optical microcavities: Steady state, bistability, self-pulsation, and modulation instability," Phys. Rev. A, Vol. 99, pp. 033848 (1-14), 2019. [DOI:10.1103/PhysRevA.99.033848]

14. M.A. Sharif, "Modulation instability-enhanced frequency comb generation in graphene-based electro-optical modulator at terahertz frequency range," J. Opt. Vol. 22, pp. 095503 (1-9), 2020. [DOI:10.1088/2040-8986/abaa20]

15. P.T.S. DeVore, D. Borlaug, and B. Jalali, "Enhancing electrooptic modulators using modulation instability," Phys. status solidi RRL, Vol. 7, pp. 566-570, 2013. [DOI:10.1002/pssr.201307174]

16. M. A. Sharif, B. Ghafary, and M.H.M. Ara, "A novel graphene-based electro-optical modulator using modulation instability," IEEE. Photon. Technol. Lett. Vol. 28, pp. 2897-2900, 2016. [DOI:10.1109/LPT.2016.2624562]

17. X. Du, I. Skachko, A. Barker, and E.Y. Andrei, "Approaching ballistic transport in suspended grapheme," Nat. Nanotechnol, Vol. 3, pp. 491-495, 2008. [DOI:10.1038/nnano.2008.199]

18. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, "Ultrahigh electron mobility in suspended grapheme," Solid state Commun, Vol. 146, pp. 351-355, 2008. [DOI:10.1016/j.ssc.2008.02.024]

19. H. Deng, F. Ye, B.A. Malomed, X. Chen, and N.C. Panoiu, "Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices," Phys. Rev. B, Vol. 91, pp. 201402 (1-5), 2015. [DOI:10.1103/PhysRevB.91.201402]

20. M.F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, "Tuneable electronic properties in grapheme," Nano Today, Vol. 6, pp. 42-60, 2011. [DOI:10.1016/j.nantod.2010.12.001]

21. A. Ciattoni and C. Rizza, "Graphene-nonlinearity unleashing at lasing threshold in graphene-assisted cavities," Phys. Rev. A, Vol. 91, pp. 053833 (1-7), 2015. [DOI:10.1103/PhysRevA.91.053833]

22. N.A. Savostianova and S.A. Mikhailov, "Giant enhancement of the third harmonic in graphene integrated in a layered structure," Appl. Phys. Lett, Vol. 107, pp. 181104 (1-4), 2015. [DOI:10.1063/1.4935041]

23. F. Shi, Y. Chen, P. Han, and P. Tassin - Small, "Broadband, Spectrally Flat, Graphene‐based Terahertz Modulators," Small, Vol. 11, pp. 6044-6050, 2015. [DOI:10.1002/smll.201502036]

24. C.T. Phare, Y.H.D. Lee, J. Cardenas, and M. Lipson, "Graphene electro-optic modulator with 30 GHz bandwidth," Nat. Photonics, Vol. 9, pp. 511-514, 2015. [DOI:10.1038/nphoton.2015.122]

25. S. Luo, Y. Wang, X. Tong, and Z. Wang "Graphene-based optical modulators," Nanoscale Res. Lett. Vol. 10, pp. 1-11, 2015. [DOI:10.1186/s11671-015-0866-7]

26. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, and H.G. Xing, "Broadband graphene terahertz modulators enabled by intraband transitions," Nat. Commun. Vol. 3, pp. 1-7, 2012. [DOI:10.1038/ncomms1787]

27. Ch. Ye, S. Khan, Zh. R. Li. E. Simsek, and V. J. Sorger, "λ-size ITO and graphene-based electro-optic modulators on SOI," IEEE. J. Sel. Top. Quantum Electron, Vol. 20, pp. 40-49, 2014. [DOI:10.1109/JSTQE.2014.2298451]

28. Sh. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. Ron Shen "All-optical graphene modulator based on optical Kerr phase shift," Optica, Vol. 3, pp. 541-544, 2016. [DOI:10.1364/OPTICA.3.000541]

29. D. Ansell1, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, and A.N. Grigorenko, "Hybrid graphene plasmonic waveguide modulators," Nat. Commun. Vol. 6, pp. 1-6, 2015. [DOI:10.1038/ncomms9846]

30. X. Peng, R. Hao, Z. Ye, P. Qin, W. Chen, H. Chen, X. Jin, D. Yang, and E. Li, "Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect," Opt. Lett. Vol. 42, pp.1736-1739, 2017. [DOI:10.1364/OL.42.001736]

31. F. Zhou and W. Du, "Ultrafast all-optical plasmonic graphene modulator," Appl. Opt. Vol. 57, pp. 6645-6650, 2018. [DOI:10.1364/AO.57.006645]

32. F. Sun, L. Xia, Ch. Nie, C. Qiu, L. Tang, J. Shen, T. Sun, L. Yu, P. Wu, Sh. Yin, Sh. Yan, and Ch. Du "An all-optical modulator based on a graphene-plasmonic slot waveguide at 1550 nm," Appl. Phys. Express, Vol. 12, pp. 042009 (1-12), 2019. [DOI:10.7567/1882-0786/ab0a89]

33. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, "All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale," Nat. Photonics, Vol. 9, pp. 525-528, 2015. [DOI:10.1038/nphoton.2015.127]

34. X. Guo, R. Liu, D. Hu, H. Hu, Zh. Wei, R.Wang, Y. Dai, Y. Cheng, K. Chen, K.Liu, G. Zhang, X. Zhu, Zh. Sun, X. Yang, and Q. Dai, "Efficient All‐Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures," Adv. Mater, Vol. 32, pp. 1907105 (1-8), 2020. [DOI:10.1002/adma.201907105]

35. H. Vahed and S.S. Ahmadi, "Hybrid plasmonic optical modulator based on multi-layer grapheme," Opt. Quantum Electron. Vol. 52, pp. 1-2, 2020. [DOI:10.1007/s11082-019-2118-z]

36. J. Wang, X. Zhang, Y. Chen, Y. Geng, Y. Du, and X. Li, "Design of a graphene-based silicon nitride multimode waveguide-integrated electro-optic modulator," Opt. Commun. Vol. 481, pp. 126531 (1-5), 2021. [DOI:10.1016/j.optcom.2020.126531]

37. C. Ma, B. Xiao, D. Zhou, and L. Xiao, "A novel tunable terahertz wave modulator based on graphene and frequency selective surface (FSS)," Opt. Commun, Vol. 478, pp. 126375 (1-6), 2021. [DOI:10.1016/j.optcom.2020.126375]

38. S. Wagner, C. Weisenstein, A.D. Smith, M. Östling, S. Kataria, and M.C. Lemme, "Graphene transfer methods for the fabrication of membrane-based NEMS devices," Microelectron. Eng, Vol. 159, pp. 108-113, 2016. [DOI:10.1016/j.mee.2016.02.065]

39. M. Chen, R.C. Haddon, R. Yan, and E. Bekyarova, "Advances in transferring chemical vapour deposition graphene: a review," Mater Horizons, Vol. 4, pp. 1054-1063, 2017. [DOI:10.1039/C7MH00485K]

40. H. Cheun Lee, W.-W. Liu, S.-P. Chai, A.R. Mohamed, A. Aziz, Ch.-S. Khe, N. M.S. Hidayah, and U. Hashim, "Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer grapheme," RSC Adv, Vol. 7, pp. 15644-15693, 2017. [DOI:10.1039/C7RA00392G]

41. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, "Electrical Control of Silicon Photonic Crystal Cavity by Graphene," Nano Lett. Vol. 13, pp. 515−518, 2013. [DOI:10.1021/nl3039212]

42. S. Liu, P. Zhang, C. Lou, F. Xiao, and J. Zhao, "Numerical simulations of discrete propagations of light waves in optically induced planar waveguide arrays," J. Mod. Opt. Vol. 56, pp. 677-684, 2009. [DOI:10.1080/09500340902745385]

43. S.A. Mikhailov, "Quantum theory of the third-order nonlinear electrodynamic effects of graphene," Phys. Rev. B, Vol. 93, pp. 085403 (1-31), 2016. [DOI:10.1103/PhysRevB.93.085403]

44. J.L. Cheng, N. Vermeulen, and J.E. Sipe, "Third order optical nonlinearity of graphene," New J. Phys. Vol. 16, pp. 053014 (1-17), 2014. [DOI:10.1088/1367-2630/16/5/053014]

45. E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, and S.A. Mikhailov, "Coherent Nonlinear Optical Response of Graphene," Phys. Rev. Lett. Vol. 105, pp. 097401 (1-4), 2010. [DOI:10.1103/PhysRevLett.105.097401]

46. V.E. Zakharov and L.A. Ostrovsky, "Modulation instability: the beginning," Physica D. Vol. 238, pp. 540-548, 2009. [DOI:10.1016/j.physd.2008.12.002]

47. A.A. Balyakin and N.M. Ryskin, "A change in the character of modulation instability in the vicinity of a critical frequency," Tech. Phys. Lett. Vol. 30, pp. 175-177, 2004. [DOI:10.1134/1.1707158]

48. M.A. Sharif, M. Khodavirdizadeh, S. Salmani, S. Mohajer, and M.H. MajlesAra, "Difference Frequency Generation-based ultralow threshold Optical Bistability in graphene at visible frequencies, an experimental realization," J. Mol. Liq, Vol. 284, pp. 92-101, 2019. [DOI:10.1016/j.molliq.2019.03.167]

49. M.A. Alejo, L. Fanelli, and C. Muñoz, "Review on the Stability of the Peregrine and Related Breathers," Front. Phys. Vol. 8, pp. 404 (1-8), 2020. [DOI:10.3389/fphy.2020.591995]

50. J.M. Dudley, F. Dias, M. Erkintalo, and G. Genty, "Instabilities, breathers and rogue waves in optics," Nat. Photonics, Vol. 8, pp. 755-764, 2014. [DOI:10.1038/nphoton.2014.220]

51. G. Mu, Z. Qin, and R. Grimshaw, "Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrodinger equation," SIAM J. Appl. Math. Vol. 75, pp. 1-20, 2015. [DOI:10.1137/140963686]

52. B.F. Feng, L. Ling, and D.A. Takahashi, "Multi‐breather and high‐order rogue waves for the nonlinear Schrödinger equation on the elliptic function background," Stud. Appl. Math. Vol. 144, pp.46-101, 2020. [DOI:10.1111/sapm.12287]

53. L.L. Feng and T.T. Zhang, "Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation," Appl. Math. Lett. Vol. 78, pp. 133-140, 2018. [DOI:10.1016/j.aml.2017.11.011]

54. G.T. Adamashvili and D.J. Kaup, "Optical surface breather in graphene," Phys. Rev. A, Vol. 95, pp.053801, 2017. [DOI:10.1103/PhysRevA.95.053801]

55. M.A. Sharif, "Spatio-temporal modulation instability of surface plasmon polaritons in graphene-dielectric heterostructure," Physica E Low Dimens. Syst. Nanostruct. Vol. 105, pp.174-181, 2019. [DOI:10.1016/j.physe.2018.09.011]

56. P.‐H. Ho, Ch.‐H. Chen, F.‐Y. Shih, Y.‐R. Chang, Sh.‐S. Li, W.‐H. Wang, M.‐Ch. Shih, W.‐T. Chen, Y‐P. Chiu, M.‐K. Li, Y‐S. Shih, and Ch.‐W. Chen, "Precisely Controlled Ultrastrong Photoinduced Doping at Graphene-Heterostructures Assisted by Trap‐State‐Mediated Charge Transfer," Adv Mater. Vol. 27, pp. 7809-7815, 2015. [DOI:10.1002/adma.201503592]

57. L. Misseeuw, T. Ciuk, A. Krajewsk, I. Pasternak, W. Strupinski, B. Feigel, M. Khoder, I. Vandriessche, J. Van Erps, S.Van Vlierberghe, H. Thienpont, P. Dubruel, and N. Vermeulen, "Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix," J. Mater. Chem. C, Vol. 6, pp. 10739-10750, 2018. [DOI:10.1039/C8TC03198C]