XML Print


1- Department of Physics, University of Qom, Qom, Iran
Abstract:   (128 Views)
In hollow nanostructures, the inner and outer surface plasmons couple together that provides interesting plasmonic properties resulting in the enhancement of the plasmonic field. In addition, triangular structures are interesting for plasmonic applications due to their sharp corners and low symmetry. In this work, gold triangular nanostructures with triangular (TTN) and circular (CTN) holes in their centers have been simulated using the FDTD method and their plasmonic properties have been compared. The extinction spectra of the structures display that CTN has only one plasmonic peak, whereas TTN has several plasmonic modes due to its lower symmetry. Each peak presents different interactions between the multipoles that understand from the charge density distribution. Also, the figure of merit (FOM) of the peaks has been calculated and a high value of 33 is obtained for one of the TTN modes, which is appropriate for sensing application.
Full-Text [PDF 333 kb]   (72 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/09/5 | Revised: 2020/10/22 | Accepted: 2021/03/15

References
1. A. Azarian and L. Sheikhy, "Dark plasmon with a high figure of merit in a single Au triangular nano frame," J. Clust. Sci. Vol. 30, pp. 1633-1639, 2019. [DOI:10.1007/s10876-019-01608-6]
2. R.T. Hill, "Plasmonic biosensors," Wiley interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol. 7, pp. 152-168, 2015. [DOI:10.1002/wnan.1314]
3. E. Petryayeva and U.J. Krull, "Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review," Anal. Chim. Acta, Vol. 706, pp. 8-24, 2011. [DOI:10.1016/j.aca.2011.08.020]
4. M.A. Mahmoud, D. O'Neil, and M.A. El-Sayed, "Hollow and solid metallic nanoparticles in sensing and in nanocatalysis," Chem. Mater. Vol. 26, pp. 44-58, 2014. [DOI:10.1021/cm4020892]
5. W. Chen, H. Hu, W. Jiang, Y. Xu, S. Zhang, and H. Xu, "Ultrasensitive nanosensors based on localized surface plasmon resonances: from theory to applications," Chinese Phys. B, Vol. 27, pp. 107403-107425, 2018. [DOI:10.1088/1674-1056/27/10/107403]
6. M.A. Mahmoud and M.A. El-Sayed, "Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors," J. Am. Chem. SOC. Vol. 132, pp. 12704-12710, 2010. [DOI:10.1021/ja104532z]
7. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, "The optimal aspect ratio of gold nanorods for plasmonic bio-sensing," Plasmonics, Vol. 5, pp. 161-167, 2010. [DOI:10.1007/s11468-010-9130-2]
8. Q. Chen, H. Qi, Y.-T. Ren, J.-P. Sun, and L. M. Ruan, "Optical properties of truncated Au nanocages with different size and shape," Aip Adv. Vol. 7, pp. 0651 (15-25), 2017. [DOI:10.1063/1.4990409]
9. B. Hazra and M. Chandra, "Plasmon hybridization mediated structure-specific refractive index sensitivity of hollow gold nanoprism in the vis-NIR region," ACS Sensors, Vol. 1, pp. 536-542, 2016. [DOI:10.1021/acssensors.5b00314]
10. C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, and N.J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Lett. Vol. 5, pp. 1569-1574, 2005. [DOI:10.1021/nl050928v]
11. M.M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S.S. Pramana, and C. Xue, "Surfactant‐free sub‐2 nm ultrathin triangular gold nanoframes," Small, Vol. 9, pp. 2880-2886, 2013. [DOI:10.1002/smll.201300200]
12. M. Tsuji, T. Kidera, A. Yajima, M. Hamasaki, M. Hattori, Ta. Tsujiab, and H. Kawazumi, "Synthesis of Ag-Au and Ag-Pd alloy triangular hollow nanoframes by galvanic replacement reactions without and with post-treatment using NaCl in an aqueous solution," Cryst. Eng. Comm. Vol. 16, pp. 2684-2691, 2014. [DOI:10.1039/c3ce42244e]
13. V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, and M.A. Iatì, "Surface plasmon resonance in gold nanoparticles: a review," J. Phys.: Condens. Matter, Vol. 29, pp. 203002-203051, 2017. [DOI:10.1088/1361-648X/aa60f3]
14. G. Fletcher, M.D. Arnold, and T. Pedersen, "Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles," Opt. Express, Vol. 23, pp. 18002-18013, 2015. [DOI:10.1364/OE.23.018002]
15. K. J. Zhang, D. B. Lu, B. Da, and Z. J. Ding, "Coupling of surface plasmon modes and refractive index sensitivity of hollow silver nanoprism," Sci. Rep. Vol. 8, pp. 1-13, 2018. [DOI:10.1038/s41598-018-34477-6]
16. S. Zhang and H. Xu, "Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors," Nanoscale, Vol. 8, pp. 13722-13729, 2016. [DOI:10.1039/C6NR03806A]
17. M.-W. Chu, V. Myroshnychenko, C.H. Chen, J.-P. Deng, C.-Y. Mou, and F.J.G. Abajo, "Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam," Nano Lett. Vol. 9, pp. 399-404, 2009. [DOI:10.1021/nl803270x]
18. N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, "The sensitivity of the distance dependent plasmonic coupling between two nanocubes to their orientation: edge-to-edge versus face-to-face," J. Phys. Chem. Vol. 120, pp. 4564-4570, 2016. [DOI:10.1021/acs.jpcc.6b01102]
19. L.-W. Nien, B. K. Chao, J. Li, and C. H. Hsueh, "Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays," Plasmonics, Vol. 10, pp. 553-561, 2015. [DOI:10.1007/s11468-014-9840-y]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb