Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 19-26 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahraki M, Ghadrdan M. Wideband Absorption Enhancement in Laterally Oriented Core-Shell c-Si/a-Si Hexagonal Nanowire Arrays. IJOP. 2021; 15 (1) :19-26
URL: http://ijop.ir/article-1-419-en.html
1- University of Sistan and Baluchestan
Abstract:   (134 Views)
In this paper, the optical properties of laterally oriented core-shell nanowire silicon solar cells (NWSCs) are optimized. The optimum structure consists of an array with non-uniform hexagonal nanowires (NWs). Each NW is constructed from an amorphous silicon layer sandwiched between two crystalline silicon layers. In order to improve the light absorption and short circuit current density (Jsc) of NWSC, a particle swarm optimization (PSO) algorithm is used to optimize the geometrical parameters of NWs. It is shown that the optimized structure has advantageous performance in terms of light absorption and Jsc. Finally, a multiple structure composed of two NWs with different morphologies and the optimized dimensions is proposed to utilize NWSCs better.
Full-Text [PDF 1060 kb]   (60 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/07/12 | Revised: 2021/03/8 | Accepted: 2021/05/21 | Published: 2021/05/25

References
1. [1] K.B. Crozier, K. Seo, H. Park, A. Solanki, and S.-Q. Li, "Controlling the Light Absorption in a Photodetector Via Nanowire Waveguide Resonances for Multispectral and Color Imaging," IEEE J. Sel. Top. Quantum Electron. Vol. 24, pp. 1-12, 2018. [DOI:10.1109/JSTQE.2018.2840342]
2. [2] S. Skalsky, Y. Zhang, J A. Alanis, H A. Fonseka, A. M. Sanchez, H. Liu, and P. Parkinson, "Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing," Light Sci. Appl. Vol. 9, pp. 43-54, 2020. [DOI:10.1038/s41377-020-0279-y] [PMID] [PMCID]
3. [3] X. Yuan, X. Chen, X. Yan, W. Wei, Y. Zhang, and X. Zhang, "Absorption-Enhanced Ultra-Thin Solar Cells Based on Horizontally Aligned p-i-n Nanowire Arrays," Nanomaterials, Vol. 10, pp. 1111 (1-10), 2020. [DOI:10.3390/nano10061111] [PMID] [PMCID]
4. [4] G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, "Optical Properties of Individual Silicon Nanowires for Photonic Devices," ACS Nano, Vol. 4, pp. 7113-7122, 2010. [DOI:10.1021/nn101076t] [PMID]
5. [5] G. Brönstrup, C. Leiterer, N. Jahr, C. Gutsche, A. Lysov, I. Regolin, W. Prost, F.J. Tegude, W. Fritzsche, and S. Christiansen, "A precise optical determination of nanoscale diameters of semiconductor nanowires," Nanotechnol. Vol. 22, pp. 385201 (1-10), 2011. [DOI:10.1088/0957-4484/22/38/385201] [PMID]
6. [6] P. Spinelli, M.A. Verschuuren, and A. Polman, "Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators," Nat. Commun. Vol. 3, pp. 692 (1-5), 2012. [DOI:10.1038/ncomms1691] [PMID] [PMCID]
7. [7] L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, "Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array SCs," Appl. Phys. Lett. Vol. 99, pp. 143116 (1-4), 2011. [DOI:10.1063/1.3647847]
8. [8] L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B. M. Clemens, and M.L. Brongersma, "Engineering light absorption in semiconductor nanowire devices," Nat. Mater. Vol. 8, pp. 643-647, 2009. [DOI:10.1038/nmat2477] [PMID]
9. [9] K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K.B. Crozier, "Multicolored Vertical Silicon Nanowires," Nano Lett. Vol. 11, pp. 1851-1856, 2011. [DOI:10.1021/nl200201b] [PMID]
10. [10] H. Park and K.B. Crozier, "Elliptical silicon nanowire photodetectors for polarization-resolved imaging," Opt. Express, Vol. 23, pp. 7209-7216, 2015. [DOI:10.1364/OE.23.007209] [PMID]
11. [11] A.R. Jha, Solar Cell Technology and Applications, CRC Press, 2009. [DOI:10.1201/9781420081787]
12. [12] D. Muñoz, T. Desrues, and P.-J. Ribeyron, a-Si:H/c-Si Heterojunction Solar Cells: A Smart Choice for High Efficiency Solar Cells, in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, W.G.J.H.M. van Sark, L. Korte, F. Roca, Eds. Berlin, Heidelberg: Springer, 2012. [DOI:10.1007/978-3-642-22275-7_17]
13. [13] P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, and A.F. i Morral, "Single-nanowire solar cells beyond the Shockley-Queisser limit," Nat. Photon. Vol. 7, pp. 306-310, 2013. [DOI:10.1038/nphoton.2013.32]
14. [14] S.-K. Kim, K.-D. Song, T.J. Kempa, R.W. Day, C.M. Lieber, and H.-G. Park, "Design of Nanowire Optical Cavities as Efficient Photon Absorbers," ACS Nano, Vol. 8, pp. 3707-3714, 2014. [DOI:10.1021/nn5003776] [PMID]
15. [15] Y. Xing, K. Zhang, J. Zhao, P. Han, Z. Yang, Y. Yuan, and Q. Ding, "Antireflection and absorption properties of silicon parabolic-shaped nanocone arrays," Optik, Vol. 128, pp. 133-138, 2017. [DOI:10.1016/j.ijleo.2016.10.020]
16. [16] K.T. Fountaine, C.G. Kendall, and H.A. Atwater, "Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation," Opt. Express, Vol. 22, pp. A930-A940, 2014. [DOI:10.1364/OE.22.00A930] [PMID]
17. [17] O.H.A. Zoubi, T.M. Said, M.A. Alher, S.E. Ghazaly, and H. Naseem, "Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications," Opt. Express, Vol. 23, pp. A767-A778, 2015. [DOI:10.1364/OE.23.00A767] [PMID]
18. [18] B.C. Sturmberg, K.B. Dossou, L.C. Botten, A.A. Asatryan, C.G. Poulton, R.C. McPhedran, C. Martijn de Sterke, "Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency," Appl. Phys. Lett. Vol. 101, pp. 173902 (1-4), 2012. [DOI:10.1063/1.4761957]
19. [19] B. Wang, E. Stevens, and P.W. Leu, "Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells," Opt. Express, Vol. 22, pp. A386-A395, 2014. [DOI:10.1364/OE.22.00A386] [PMID]
20. [20] M. Hussein, M.F.O. Hameed, N.F. Areed, and S.S.A. Obayya, "Ultra-high efficient solar cell based on decagonal arrays of silicon nanowires," Opt. Eng. Vol. 53, pp. 117105 (1-7), 2014. [DOI:10.1117/1.OE.53.11.117105]
21. [21] B. Wang and P.W. Leu, "Enhanced absorption in silicon nanocone arrays for photovoltaics," Nanotechnol. Vol. 23, pp. 194003 (1-7), 2012. [DOI:10.1088/0957-4484/23/19/194003] [PMID]
22. [22] J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, "Solution-processed core-shell nanowires for efficient photovoltaic cells," Nat. Nanotechnol. Vol. 6, pp. 568-572, 2011. [DOI:10.1038/nnano.2011.139] [PMID]
23. [23] B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature Vol. 449, pp. 885-889, 2007. [DOI:10.1038/nature06181] [PMID]
24. [24] S.-K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.-D. Song, H.-G. Park, and C.M. Lieber, "Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design," Nano Lett. Vol. 12, pp. 4971-4976, 2012. [DOI:10.1021/nl302578z] [PMID]
25. [25] K.-D. Song, T.J. Kempa, H.-G. Park, and S.-K. Kim, "Laterally assembled nanowires for ultrathin broadband solar absorbers," Opt. Express, Vol. 22, pp. A992-A1000, 2014. [DOI:10.1364/OE.22.00A992] [PMID]
26. [26] M. Adachi, M. Anantram, and K. Karim, "Optical properties of crystalline− amorphous core− shell silicon nanowires," Nano Lett. Vol. 10, pp. 4093-4098, 2010. [DOI:10.1021/nl102183x] [PMID]
27. [27] L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, and Y. Cui, "Crystalline-amorphous core− shell silicon nanowires for high capacity and high current battery electrodes," Nano Lett. Vol. 9, pp. 491-495, 2008. [DOI:10.1021/nl8036323] [PMID]
28. [28] Z. Yang, X. Li, D.Y. Lei, A. Shang, and S. Wu, "Omnidirectional absorption enhancement of symmetry-broken crescent-deformed single-nanowire photovoltaic cells," Nano Energy, Vol. 13, pp. 9-17, 2015. [DOI:10.1016/j.nanoen.2015.02.007]
29. [29] T. Khudiyev and M. Bayindir, "Nanosprings harvest light more efficiently," Appl. Opt. Vol. 54, pp. 8018-8023, 2015. [DOI:10.1364/AO.54.008018] [PMID]
30. [30] M. Shahraki, M.R. Salehi, and E. Abiri, "Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells," Opt. Eng. Vol. 54, pp. 115102-115102, 2015. [DOI:10.1117/1.OE.54.11.115102]
31. [31] N.F. Areed, M. Fouad, and S.S. Obayya, "Highly Efficient Solid Gear-Shaped Silicon Nanowire for Solar Energy Harvesting," IEEE Photonics Technol. Lett. Vol. 29, pp. 205-208, 2016. [DOI:10.1109/LPT.2016.2636230]
32. [32] M. Hussein, M.F.O. Hameed, N.F. Areed, A. Yahia, and S. Obayya, "Funnel-shaped silicon nanowire for highly efficient light trapping," Opt. Lett. Vol. 41, pp. 1010-1013, 2016. [DOI:10.1364/OL.41.001010] [PMID]
33. [33] J. Yao, H. Yan, and C.M. Lieber, "A nanoscale combing technique for the large-scale assembly of highly aligned nanowires," Nat. Nanotechnol. Vol. 8, pp. 329-335, 2013. [DOI:10.1038/nnano.2013.55] [PMID]
34. [34] L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, and M.L. Brongersma, "Semiconductor nanowire optical antenna solar absorbers," Nano Lett. Vol. 10, pp. 439-445, 2010. [DOI:10.1021/nl9036627] [PMID]
35. [35] M. Shahraki, M.R. Salehi, and E. Abiri, "Omnidirectional broadband absorption enhancement in laterally assembled quadrangle silicon nanowire solar cells," J. Mod. Opt. Vol. 64, pp. 23-31, 2017. [DOI:10.1080/09500340.2016.1205675]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb