Volume 13, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 13, No 1, Winter-Spring 2019)                   IJOP 2019, 13(1): 71-76 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salmanogli A, Asghari Sana F. Lattice-Plasmon Quantum Features. IJOP. 2019; 13 (1) :71-76
URL: http://ijop.ir/article-1-328-en.html
1- Faculty of Engineering, Electrical and Electronics Engineering Department, Çankaya University
2- Department of Nanotechnology and Nanomedicine, Hacettepe University
Abstract:   (2181 Views)
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array plasmon. For this reason, we consider a system containing array of the plasmonic nanoparticles and quantum dots. For a complete understanding, we analyze the system with the full quantum theory. Notably, the full quantum analyzing enables us to investigate the quantum fluctuation of the array field. Here, for instance, we study the second-order correlation function and report its modeling results.
Full-Text [PDF 1465 kb]   (901 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/11/26 | Revised: 2018/04/15 | Accepted: 2018/05/8 | Published: 2019/10/27

1. D.K. Lim, K.S. Jeon, J.H. Hwang, H. Kim, S. Kwon, Y.D. Suh, and J.M. Nam, "Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap," Nat. Nanotechnol. Vol. 6, pp. 452-460, 2011. [DOI:10.1038/nnano.2011.79]
2. A. Rostami, A. SalmanOgli, F. Farhadnia, M. Dolatyari, G. Rostami, and E. Pişkin, "Design of a portable nanosensor for easy breast tomography," RSC Adv. J. Vol. 25, pp. 19002-19013, 2015. [DOI:10.1039/C4RA15867A]
3. V. Kulkarni, E. Prodan, and P. Nordlander, "Quantum plasmonics: optical properties of a nanomatryushka," Nano Lett. Vol. 12, pp. 5873-5879, 2013. [DOI:10.1021/nl402662e]
4. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, "Quantum plasmonics," Nat. Phys. Vol. 6, pp. 329-340, 2013. [DOI:10.1038/nphys2615]
5. M. B. Ross, Ch. A. Mirkin, and G. C. Schatz, "Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures," Phys. Chem. J. Vol. 2, pp. 816-830, 2016. [DOI:10.1021/acs.jpcc.5b10800]
6. S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," Phys. Chem. J. Vol. 23, pp. 1087 (1-5), 2004. [DOI:10.1063/1.1760740]
7. B.T. Draine and J.C. Weingartner, Radiative torques on interstellar grains: I. Superthermal spinup. arXiv preprint astro-ph/9605046, 1996. [DOI:10.1086/177887]
8. E. Waks and D. Sridharan, "Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter," Phys. Rev. A. 82, Vol. 4, pp. 043845 (1-14), 2010. [DOI:10.1103/PhysRevA.82.043845]
9. A. SalmanOgli and K. Salimi, "Lattice plasmon effect on imaging resolution: Point-spread function enhancing," Sens. Actuator A-Phys. Vol. 267, pp. 9-21, 2017. [DOI:10.1016/j.sna.2017.09.053]
10. K. Roy-Choudhury and A.F.J. Levi, " Quantum fluctuations and saturable absorption in mesoscale lasers," Phys. Rev. A. Vol. 4, pp. 043827 (1-9), 2011. [DOI:10.1103/PhysRevA.83.043827]
11. A. SalmanOgli, "Plasmonic-quantum interaction analysis with full quantum theory," Phys. Rev. A, Vol. 94, pp. 043819-043832, 2016.
12. B.T. Draine and J.C. Weingartner, "Radiative Torques on interstellar grain. I. superthermal spin up," Astrophys. J. Vol. 470, pp. 551-565, 1996. [DOI:10.1086/177887]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb