Volume 13, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 13, No 1, Winter-Spring 2019)                   IJOP 2019, 13(1): 61-70 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farhadnia F, Rostami A, Matloub S. Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry. IJOP. 2019; 13 (1) :61-70
URL: http://ijop.ir/article-1-300-en.html
1- Faculty of Electrical and Computer Engineering, University of Tabriz,
2- Faculty of Electrical and Computer Engineering, University of Tabriz
Abstract:   (2631 Views)

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasmonic solar cell has been very popular. In this study, it is shown that the enhancement of near-field electromagnetic waves severely affects the generation rate, which handles the carrier’s generation in the solar cell equations and causes alteration of the photocurrent. This means that by manipulating the plasmonic properties of nanoparticles (shape and density) and their interaction with photons in solar cell structure, distribution of electromagnetic fields will be altered. Hence, the optical power related to the poynting vector is changed. So, with the aim of improving the solar cell some important parameters such as alteration of nanoparticle shape and their inter-distance were investigated. Finally, a comparison between traditional solar cells and our improved structure was undertaken.

Full-Text [PDF 869 kb]   (933 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/01/13 | Revised: 2018/04/8 | Accepted: 2018/05/5 | Published: 2019/10/27

1. S. Pillai, K.R. Catchpole, T. Trupke, and M. A. Green,"Surface Plasmon enhanced silicon solar cells," J. Appl. Phys.. Vol. 101, pp. 093105 (1-8), 2007. [DOI:10.1063/1.2734885]
2. J.O. Schumacher, "Numerical simulation of silicon solar cells with novel cell structure," PhD thesis, University of Konstanz, 2000.
3. P. Spinelli, V.E. Ferry, J. Groep, M. Lare, M. A. Verschuuren, R.E. I.Schropp, and H.A. Atwater, "A.Polman, Plasmonic light trapping in thin-film Si solar cells," J. Opt., Vol. 14, pp. 024002 (1-12), 2012. [DOI:10.1088/2040-8978/14/2/024002]
4. J. Jung, T. Søndergaard, T. Garm Pedersen, K. Pedersen, A.N. Larsen, and B.B. Nielsen, "Dyadic Green's functions of thin films: Applications within Plasmonic solar cells," Phys. Rev. B, Vol. 83, pp. 085419 (1-14), 2011. [DOI:10.1103/PhysRevB.83.085419]
5. S. Tembhurne, M. Dumortier, and S. Haussener, "Heat transfer modeling in integrated photo electrochemical hydrogen generators using concentrated irradiation," IEEE Proceedings IHTC15, Vol. 15, pp. 9526 (1-13), 2014. [DOI:10.1615/IHTC15.sol.009526]
6. J. Yang, J. You, C. Chen, W. Hsu, H. Tan, X. W. Zhang, Z. Hong, and Y. Yang, "Plasmonic Polymer Tandem Solar Cell," ACS NANO, Vol. 8, pp. 6210-6217, 2011. [DOI:10.1021/nn202144b]
7. M.A. Green and S. Pillai, "Harnessing Plasmonics for solar cells," Nat. photon. Vol. 6, pp. 130-132, 2012. [DOI:10.1038/nphoton.2012.30]
8. V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater, "Plasmonic nanostructure design for efficient Light coupling into solar cells," Nano Lett. Vol. 8, pp.4391-4397, 2008. [DOI:10.1021/nl8022548]
9. R. Guo, H. Huang, P. Chang, L. Lu, X. Chen, X. Yang, Z. Fand, B. Zhu, and D. Li, "Coupled optical and electrical modeling of thin-film amorphous silicon solar cells based on nanodent Plasmonic substrates," Nano energy, Vol. 8, pp. 141-149, 2014. [DOI:10.1016/j.nanoen.2014.05.021]
10. Y.A. Akimov, W.S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle Plasmon modes," Opt. Express, Vol, 17, pp. 10195 (1-11), 2009. [DOI:10.1364/OE.17.010195]
11. S.D. Standridge, G.C. Schatz, and J.T. Hupp, "Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles via Atomic Layer Deposition of TiO," Langmuir, Vol. 25, pp. 2596-2600, 2009. [DOI:10.1021/la900113e]
12. W. Jiang, D.S. Ginger, M. Salvador, and S.T. Dunham, "Optics and Device Simulation of Surface Plasmonic Enhancement of Organic Solar Cell Performance using Silver Nano-Prisms," The Int. Conf. Simulation of Semiconductor Processes and Devices, SISPAD 2012, September 5-7, 2012, Denver, Colorado, USA, Vol. 7, pp. 245-249.
13. T.F. Villesen, "On the Enhancement of Light Absorption in Si Solar Cells by Front-Side Plasmonic Scattering," PhD Thesis science and technology Aarhus University, (2014).
14. Y.P. Singh, A. Kumar1, A. Jain, and A. Kapoor, "Enhancement in Optical Absorption of Plasmonic Solar Cells," Renew Energ J. Vol. 6, pp. 1-6, 2013. [DOI:10.2174/1876387101306010001]
15. S.S. Verma, "Plasmonic solar cells," The Ministry of New and Renewable Energy (MNRE), India , AKSHAY URJA J. Vol. 7, pp. 22-26, 2013.
16. K.R. Catchpole, "A. Polman, Plasmonic solar cells," Opt. Express, Vol. 16, pp. 21793- 21800, 2008. [DOI:10.1364/OE.16.021793]
17. U.W. Paetzold, K. Bittkau, M. Meier, R. Carius, and U. Rau, "Simulation-Based Analysis of Plasmonic Light Trapping in Thin-Film Silicon Solar Cells," NUSOD 13th International Conference, Vol. 22, pp. 1-2, 2013. [DOI:10.1109/NUSOD.2013.6633143]
18. M.B. Eteiba, E.T. El. Shenawy, J.H. Shazly, and A.Z. Hafez, "A Photovoltaic (Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI Interface," Int. Journal of Computer Applications, Vol. 69, No. 6, pp. 0975 - 8887, 2013. [DOI:10.5120/11845-7579]
19. T. Salmi, M. Bouzguenda, A. Gastli, and A. Masmoudi, "MATLAB/Simulink Based Modeling of Solar Photovoltaic Cell," Int. J. Energy Res. Vol. 2, no. 2, pp. 213-218, 2012.
20. A. Salman Ogli and A. Rostami, "Investigation of Surface Plasmon Resonance in Multi-layered Onion-Like Hetero nano crystal Structures," IEEE Trans. on Nanotechnology, Vol. 12, pp.831-538, 2013. [DOI:10.1109/TNANO.2013.2275034]
21. A. Salman Ogli and A. Rostami, "Plasmon Modes Hybridization Influence on Nano-Bio-Sensors Specification," IEEE Trans. Nanotechnology, Vol. 12, pp. 558-566, 2013. [DOI:10.1109/TNANO.2013.2277760]
22. M.B. Ross, C.A. Mirkin, and G.C. Schatz, "Optical properties of one, two, and three-dimensional arrays of plasmonic nanostructures," J. Phys. Chem. C, Vol. 120, pp. 816-830, 2016. [DOI:10.1021/acs.jpcc.5b10800]
23. S. Zou, N. Janel, G.C. Schatz, "nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. Vol. 120, pp. 10871-10875, 2004. [DOI:10.1063/1.1760740]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb