Volume 18, Issue 1 (10-2024)                   IJOP 2024, 18(1): 113-128 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kondori H, Ghadrdan M, Mansouri-Birjandi M A. Bidirectional Absorber from Broadband to Narrowband Using Epsilon-Near-Zero material and Plasmonic Structures. IJOP 2024; 18 (1) :113-128
URL: http://ijop.ir/article-1-588-en.html
1- Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan (USB), Zahedan, Iran
Abstract:   (188 Views)
In this study, a bidirectional absorber with broadband and narrowband absorption capabilities is designed and analyzed. The structure consists of two sides: the top side is composed of Au disks and indium tin oxide (ITO) as an epsilon-near-zero (ENZ) material for broadband absorption in the near-infrared region, whereas the bottom side features a simple metal-dielectric-metal configuration for narrowband absorption. Broadband absorption, covering more than 90% of the spectrum within the wavelength range of 1470–2290 nm, results from the coupling of the ENZ modes with the plasmon modes. Narrowband absorption with near-unity efficiency at a wavelength of 1550 nm was achieved because of the localized plasmonic resonances in the Al disk arrays. The numerical simulation results demonstrate that this structure can achieve nearly perfect absorption in both light propagation directions (+z and −z) through the optimization of geometric parameters. In addition, this design has potential applications in color filters, energy storage systems, and advanced optical devices.
 
Full-Text [PDF 1174 kb]   (102 Downloads)    
Type of Study: Research | Subject: Surface Optics, Plasmonic Structures
Received: 2025/06/19 | Revised: 2025/11/18 | Accepted: 2025/10/28 | Published: 2025/11/3

References
1. N. Khalilazemi, M. Abdolrazzaghi, P. Musilek, and E. Baladi, "A planar compact absorber for microwave sensing based on transmission-line metamaterials," IEEE Sens. J., Vol. 24, no. 24, pp. 41864-41874, 2024. [DOI:10.1109/JSEN.2024.3484585]
2. M.A. Khalil, W.H. Yong, M.S. Islam, L.Y. Chiong, A. Hoque, N. Ullah, H.H. GOH, T.A. KURNIAWAN, M.S. Soliman, and M.T. Islam, "Design of dual peak star shaped metamaterial absorber for S and C band sensing applications," Sci. Rep., Vol. 14, no. 1, pp. 26609(1-14), 2024. [DOI:10.1038/s41598-024-77215-x] [PMID] []
3. E. Eroglu and B. Chowdhury, Development of Multilayer Metamaterial Absorber for Medical Applications, 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA). 2024. [DOI:10.1109/ICEAA61917.2024.10701654]
4. B. Salim and S. Maity, "A broadband metamaterial absorber for cloaking applications," in 2022 3rd International Conference for Emerging Technology (INCET), pp. 1-4, 2022. [DOI:10.1109/INCET54531.2022.9824418]
5. A. Armghan, J. Logeshwaran, S. Raja, K. Aliqab, M. Alsharari, and S.K. Patel, "Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model," Heliyon, Vol. 10, no. 4, pp. e26371(1-19), 2024. [DOI:10.1016/j.heliyon.2024.e26371] [PMID] []
6. Z. Qiu, G. Jin, and B. Tang, "Thermally controlled broadband Ge2Sb2Te5-based metamaterial absorber for imaging applications," Photonics, Vol. 11, pp. 272(1-9), Mar. 2024. [DOI:10.3390/photonics11030272]
7. G. Baffou and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat," Laser Photon. Rev., Vol. 7, no. 2, pp. 171-187, Mar. 2013. [DOI:10.1002/lpor.201200003]
8. A.F. Bukhanko, "Particular features of the optical properties of an anisotropic metamaterial with a near-zero dielectric permittivity," Opt. Spectrosc., Vol. 122, no. 4, pp. 661-669, 2017. [DOI:10.1134/S0030400X17040105]
9. A. Gazizov and M. Salakhov, "Tip-enhanced Raman scattering in epsilon-near-zero nanocavity," Opt. Spectrosc., Vol. 132, pp. 353-356, Sep. 2024. [DOI:10.1134/S0030400X24040064]
10. N. Kinsey and J. Khurgin, "Nonlinear epsilon-near-zero materials explained: opinion," Opt. Mater. Express, Vol. 9, no. 7, pp. 2793-2796, 2019. [DOI:10.1364/OME.9.002793]
11. S.A. Schulz, A.A. Tahir, M.Z. Alam, J. Upham, I. De Leon, and R.W. Boyd, "Optical response of dipole antennas on an epsilon-near-zero substrate," Phys. Rev. A, Vol. 93, no. 6, pp. 063846(1-4), Jun. 2016. [DOI:10.1103/PhysRevA.93.063846]
12. Z.T. Xie, J. Wu, H.Y. Fu, and Q. Li, "Tunable electro- and all-optical switch based on epsilon-near-zero metasurface," IEEE Photonics J., Vol. 12, no. 4, pp. 1-10, 2020. [DOI:10.1109/JPHOT.2020.3010284]
13. Y. Sha, Z.T. Xie, J. Wu, H.Y. Fu, and Q. Li, "All-optical switching in epsilon-near-zero asymmetric directional coupler," Sci. Rep., Vol. 12, no. 1, pp. 17958(1-10), 2022. [DOI:10.1038/s41598-022-22573-7] [PMID] []
14. X. Jiang, H. Lu, Q. Li, H. Zhou, S. Zhang, and H. Zhang, "Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm," Vol. 7, no. 11, pp. 1835-1843, 2018. [DOI:10.1515/nanoph-2018-0102]
15. Y. Vaddi, T.-L. Lim, M. Alam, S. Vangala, J. Upham, J. Hendrickson, and R. Boyd, "An Ultrafast all-optical switch with an epsilon-near-zero-based nanocavity," Advanced Photonics Congress 2024, paper NpTh3C.1, 2024. [DOI:10.1364/NP.2024.NpTh3C.1]
16. E. Li and A.X. Wang, "Femto-joule all-optical switching using epsilon-near-zero high-mobility conductive oxide," IEEE J. Sel. Top. Quantum Electron., Vol. 27, no. 2, pp. 1-9, 2021. [DOI:10.1109/JSTQE.2020.3018104] [PMID]
17. Y. Wang, Z.T. Xie, Y. Sha, H.Y. Fu, and Q. Li, "Epsilon-near-zero based electro-optical and all-optical modulator for intensity and phase modulation," in 2023 Opto-Electronics and Communications Conference (OECC), pp. 1-3, 2023. [DOI:10.1109/OECC56963.2023.10209693]
18. A. Rafatmah, M. Miri, and N. Yasrebi, "Energy-efficient high-speed optical modulators based on the interplay of epsilon-near-zero effect in graphene and ITO," J. Opt. Soc. Am. B, Vol. 41, pp. 2048-2059, 2024. [DOI:10.1364/JOSAB.529432]
19. M.G. Wood, P.S. Finnegan, K.M. Musick, W.M. Mook, C.D. Nordquist, A.J. Grine, and D.K. Serkland, "Epsilon-near-zero modulators integrated on Si3N4 waveguides for Operation Shorter than 1µm," in Frontiers in Optics and Laser Science 2023 (FiO, LS), Technical Digest Series. Tacoma, Washington: Optica Publishing Group, paper JTu4A.79, 2023. [DOI:10.1364/FIO.2023.JTu4A.79] []
20. B. Zhou, E. Li, Y. Bo, and A.X. Wang, "High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide," J. Light. Technol., Vol. 38, no. 13, pp. 3338-3345, 2020. [DOI:10.1109/JLT.2020.2979192]
21. M.G. Wood, S. Campione, S. Parameswaran, T.S. Luk, J.R. Wendt, D.K. Serkland, and G.A. Keeler, "Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica, Vol. 5, no. 3, pp. 233-236, 2018. [DOI:10.1364/OPTICA.5.000233]
22. Y. Kuang, Y. Liu, L. Tian, W. Han, and Z. Li, "A dual-slot electro-optic modulator based on an epsilon-near-zero oxide," IEEE Photonics J., Vol. 11, no. 4, pp. 1-12, 2019. [DOI:10.1109/JPHOT.2019.2927756]
23. E. Alvear-Cabezón, T. Taliercio, S. Blin, R. Smaali, F. Gonzalez-Posada, A. Baranov, R. Teissier, and E. Centeno, "Epsilon near-zero all-optical terahertz modulator," Appl. Phys. Lett., Vol. 117, no. 11, pp. 111101(1-5), Sep. 2020. [DOI:10.1063/5.0012206]
24. A.R. Davoyan, A.M. Mahmoud, and N. Engheta, "Optical isolation with epsilon-near-zero metamaterials," Opt. Express, Vol. 21, no. 3, pp. 3279-3286, 2013. [DOI:10.1364/OE.21.003279] [PMID]
25. M. Vafaei, M. Moradi, and G.H. Bordbar, "Highly sensitive refractive index sensing by epsilon near zero metamaterials," Optik, Vol. 244, pp. 167617(1-11), 2021. [DOI:10.1016/j.ijleo.2021.167617]
26. H. Jiang, Y. Zhao, H. Ma, C. Feng, Y. Wu, W. Zhang, M. Chen, M. Wang, Y. Lian, Z. Cao, and J. Shao, "Polarization-independent, tunable, broadband perfect absorber based on semi-sphere patterned Epsilon-Near-Zero films," Appl. Surf. Sci., Vol. 596, pp. 153551(1-9), 2022. [DOI:10.1016/j.apsusc.2022.153551]
27. S. Hayati Raad, M. Afshari-Bavil, and D. Liu, "Efficient and high-quality absorption enhancement using epsilon-near-zero cylindrical nano-shells constructed by graphene," Sci. Rep., Vol. 14, pp. 1-12 Mar. 2024. [DOI:10.1038/s41598-024-55194-3] [PMID] []
28. E.M. Smith, J. Chen, J.R. Hendrickson, J.W. Cleary, C. Dass, A.N. Reed, S. Vangala, and J. Guo., "Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption," Opt. Mater. Express, Vol. 10, no. 10, pp. 2439-2446, 2020. [DOI:10.1364/OME.404169]
29. L. Cheng, K. Huang, F. Wu, and X. Li, "Tunable nonlinear meta-absorber based on epsilon-near-zero metamaterial," J. Russ. Laser Res., Vol. 44, no. 2, pp. 148-155, 2023. [DOI:10.1007/s10946-023-10117-x]
30. H. Kondori, M. Ghadrdan, and M.A. Mansouri-Birjandi, "Bidirectional and broadband perfect absorber based on epsilon-near-zero material," Opt. Contin., Vol. 4, no. 4, pp. 745-755, 2025. [DOI:10.1364/OPTCON.555669]
31. Z. Meng, H. Cao, and X. Wu, "New design strategy for broadband perfect absorber by coupling effects between metamaterial and epsilon-near-zero mode," Opt. Mater., Vol. 96, pp. 109347(1-7), 2019. [DOI:10.1016/j.optmat.2019.109347]
32. A. Corona, D. Murthy, and J.-L. Olvera-Cervantes, "Novel microwave filters based on Epsilon Near Zero waveguide tunnels," Microw. Opt. Technol. Lett., Vol. 53, pp. 1706 1710, Aug. 2011. [DOI:10.1002/mop.26147]
33. H. Mu, C. Ding, T. Yi, Y. Wang, F. Meng, and J. Wang, "Tunable bandpass filter based on epsilon-near-zero metamaterials using liquid crystals," Liq. Cryst., Vol. 51, no. 5, pp. 773 782, Apr. 2024. [DOI:10.1080/02678292.2024.2325573]
34. J. Kyoung, D. Park, S. Byun, J. Lee, S. Choi, S. Park, and S. Hwang, "Epsilon-near-zero meta-lens for high resolution wide-field imaging," Opt. Express, Vol. 22, Dec. 2014. [DOI:10.1364/OE.22.031875] [PMID]
35. A. Anopchenko, L. Tao, C. Arndt, and H. (Ho W. Lee, "Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness," ACS Photonics, Vol. 5, pp. 2631-2637, Apr. 2018. [DOI:10.1021/acsphotonics.7b01373]
36. J. Wu, M. Clementi, C. Huang, F. Ye, H. Fu, L. Lu, S. Zhang, Q. Li, and C.-S. Brès, "Thermo-optic epsilon-near-zero effects," Nat. Commun., Vol. 15, no. 1, pp. 794(1-9), 2024. [DOI:10.1038/s41467-024-45054-z] [PMID] []
37. Q. Wang, T. Liu, L. Li, C. Huang, J. Wang, M. Xiao, Y. Li, and W. Li, "Ultra-broadband directional thermal emission," Vol. 13, no. 5, pp. 793-801, 2024. [DOI:10.1515/nanoph-2023-0742] [PMID] []
38. I. Liberal and N. Engheta, "Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies.," Proc. Natl. Acad. Sci. U. S. A., Vol. 115, no. 12, pp. 2878-2883, Mar. 2018. [DOI:10.1073/pnas.1718264115] [PMID] []
39. Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photonics, Vol. 2, no. 2, pp. 183-188, Feb. 2015. [DOI:10.1021/ph500410u]
40. M. Yoo, H.K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors Actuators B Chem., Vol. 222, pp. 173-180, 2016. [DOI:10.1016/j.snb.2015.08.074]
41. H. Zhou, D. Hu, G. Jia, J. Ji, X. Mu, X. Liu, and Z. Shang, "A novel chemical sensor using metamaterial absorber for methanol sensing aplications," The 7th International Multidisciplinary Conference on Optofluidics, pp. 1-2, 2017.
42. C. Chen, L. Zhou, J. Yu, Y. Wang, S. Nie, S. Zhu, and J. Zhu, "Dual functional asymmetric plasmonic structures for solar water purification and pollution detection," Nano Energy, Vol. 51, pp. 451-456, 2018. [DOI:10.1016/j.nanoen.2018.06.077]
43. S. Zhou, Z. Shen, R. Kang, S. Ge, and W. Hu, "Liquid crystal tunable dielectric metamaterial absorber in the terahertz range," Appl. Sci., Vol. 8, no. 11, pp. 1-7, 2018. [DOI:10.3390/app8112211]
44. H. Wang, Y. Yang, and L. Wang, "Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer," Appl. Phys. Lett., Vol. 105, no. 7, pp. 71907(1-5), Aug. 2014. [DOI:10.1063/1.4893616]
45. Z. Song, A. Chen, and J. Zhang, "Terahertz switching between broadband absorption and narrowband absorption," Opt. Express, Vol. 28, pp. 2037-2044, Jan. 2020. [DOI:10.1364/OE.376085] [PMID]
46. Q. Wang, B. Li, L. Zeng, Q. Yang, X. Zhang, R. Wen, and C. Deng, "Switchable quadruple narrowband to broadband terahertz perfect absorber based on graphene and VO2 metamaterials," Diam. Relat. Mater., Vol. 142, pp. 110832(1-8), 2024. [DOI:10.1016/j.diamond.2024.110832]
47. Y.-Y. Cheng, D. Meng, M.-Y. Xu, Y. Liu, P.-P. Zhuang, D. Lin, J. Liu, and Y.-S. Chen,, "Wide-band and narrow-band switchable terahertz absorber based on graphene," Results Phys., Vol. 52, pp. 106838(1-10), 2023. [DOI:10.1016/j.rinp.2023.106838]
48. F. Wang, H. Gao, W. Peng, R. Li, S. Chu, L. Yu, and Q. Wang, "Bidirectional band-switchable nano-film absorber from narrowband to broadband," Opt. Express, Vol. 29, no. 4, pp. 5110-5120, 2021. [DOI:10.1364/OE.417780] [PMID]
49. S. Campione, I. Brener, and F. Marquier, "Theory of epsilon-near-zero modes in ultrathin films," Phys. Rev. B, Vol. 91, no. 12, pp. 121408(1-5), Mar. 2015. [DOI:10.1103/PhysRevB.91.121408]
50. E. D. Palik, Handbook of Optical Constants of Solids. New York, 1998.
51. L. Zhang, S. Love, A. Anopchenko, and H.W.H. Lee, "Hollow core optical fiber enabled by epsilon-near-zero material," Vol. 13, no. 7, pp. 1025-1031, 2024. [DOI:10.1515/nanoph-2024-0025] [PMID] []
52. Z. Wang, P. Zhou, and G. Zheng, "Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response," Results Phys., Vol. 14, pp. 102376(1-7), 2019. [DOI:10.1016/j.rinp.2019.102376]
53. S.F.J. Blair, J.S. Male, S.A. Cavill, C.P. Reardon, and T.F. Krauss, "Photonic characterisation of Indium Tin Oxide as a function of deposition conditions," Nanomaterials, Vol. 13, no. 13, pp. 1-13, 2023. [DOI:10.3390/nano13131990] [PMID] []
54. J. Wen, W. Sun, B. Liang, C. He, K. Xiong, Z. Wu, H. Zhang, H. Yu, Q. Wang, Y. Pan, Y. Zhang, and Z. Liu, "Dynamically switchable broadband-narrowband terahertz metamaterial absorber based on vanadium dioxide and multilayered structure," Opt. Commun., Vol. 545, pp. 129710(1-8), 2023. [DOI:10.1016/j.optcom.2023.129710]
55. Y. Liu, R. Huang, and Z. Ouyang, "Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene," Opt. Express, Vol. 29, pp. 20839-20850, Jun. 2021. [DOI:10.1364/OE.428790] [PMID]
56. D. Gong, J. Mei, N. Li, and Y. Shi, "Tunable metamaterial absorber based on VO2-graphene," Mater. Res. Express, Vol. 9, no. 11, pp. 115803(1-10), 2022. [DOI:10.1088/2053-1591/ac9fac]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb