1. N. Khalilazemi, M. Abdolrazzaghi, P. Musilek, and E. Baladi, "A planar compact absorber for microwave sensing based on transmission-line metamaterials," IEEE Sens. J., Vol. 24, no. 24, pp. 41864-41874, 2024. [
DOI:10.1109/JSEN.2024.3484585]
2. M.A. Khalil, W.H. Yong, M.S. Islam, L.Y. Chiong, A. Hoque, N. Ullah, H.H. GOH, T.A. KURNIAWAN, M.S. Soliman, and M.T. Islam, "Design of dual peak star shaped metamaterial absorber for S and C band sensing applications," Sci. Rep., Vol. 14, no. 1, pp. 26609(1-14), 2024. [
DOI:10.1038/s41598-024-77215-x] [
PMID] [
]
3. E. Eroglu and B. Chowdhury, Development of Multilayer Metamaterial Absorber for Medical Applications, 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA). 2024. [
DOI:10.1109/ICEAA61917.2024.10701654]
4. B. Salim and S. Maity, "A broadband metamaterial absorber for cloaking applications," in 2022 3rd International Conference for Emerging Technology (INCET), pp. 1-4, 2022. [
DOI:10.1109/INCET54531.2022.9824418]
5. A. Armghan, J. Logeshwaran, S. Raja, K. Aliqab, M. Alsharari, and S.K. Patel, "Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model," Heliyon, Vol. 10, no. 4, pp. e26371(1-19), 2024. [
DOI:10.1016/j.heliyon.2024.e26371] [
PMID] [
]
6. Z. Qiu, G. Jin, and B. Tang, "Thermally controlled broadband Ge2Sb2Te5-based metamaterial absorber for imaging applications," Photonics, Vol. 11, pp. 272(1-9), Mar. 2024. [
DOI:10.3390/photonics11030272]
7. G. Baffou and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat," Laser Photon. Rev., Vol. 7, no. 2, pp. 171-187, Mar. 2013. [
DOI:10.1002/lpor.201200003]
8. A.F. Bukhanko, "Particular features of the optical properties of an anisotropic metamaterial with a near-zero dielectric permittivity," Opt. Spectrosc., Vol. 122, no. 4, pp. 661-669, 2017. [
DOI:10.1134/S0030400X17040105]
9. A. Gazizov and M. Salakhov, "Tip-enhanced Raman scattering in epsilon-near-zero nanocavity," Opt. Spectrosc., Vol. 132, pp. 353-356, Sep. 2024. [
DOI:10.1134/S0030400X24040064]
10. N. Kinsey and J. Khurgin, "Nonlinear epsilon-near-zero materials explained: opinion," Opt. Mater. Express, Vol. 9, no. 7, pp. 2793-2796, 2019. [
DOI:10.1364/OME.9.002793]
11. S.A. Schulz, A.A. Tahir, M.Z. Alam, J. Upham, I. De Leon, and R.W. Boyd, "Optical response of dipole antennas on an epsilon-near-zero substrate," Phys. Rev. A, Vol. 93, no. 6, pp. 063846(1-4), Jun. 2016. [
DOI:10.1103/PhysRevA.93.063846]
12. Z.T. Xie, J. Wu, H.Y. Fu, and Q. Li, "Tunable electro- and all-optical switch based on epsilon-near-zero metasurface," IEEE Photonics J., Vol. 12, no. 4, pp. 1-10, 2020. [
DOI:10.1109/JPHOT.2020.3010284]
13. Y. Sha, Z.T. Xie, J. Wu, H.Y. Fu, and Q. Li, "All-optical switching in epsilon-near-zero asymmetric directional coupler," Sci. Rep., Vol. 12, no. 1, pp. 17958(1-10), 2022. [
DOI:10.1038/s41598-022-22573-7] [
PMID] [
]
14. X. Jiang, H. Lu, Q. Li, H. Zhou, S. Zhang, and H. Zhang, "Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm," Vol. 7, no. 11, pp. 1835-1843, 2018. [
DOI:10.1515/nanoph-2018-0102]
15. Y. Vaddi, T.-L. Lim, M. Alam, S. Vangala, J. Upham, J. Hendrickson, and R. Boyd, "An Ultrafast all-optical switch with an epsilon-near-zero-based nanocavity," Advanced Photonics Congress 2024, paper NpTh3C.1, 2024. [
DOI:10.1364/NP.2024.NpTh3C.1]
16. E. Li and A.X. Wang, "Femto-joule all-optical switching using epsilon-near-zero high-mobility conductive oxide," IEEE J. Sel. Top. Quantum Electron., Vol. 27, no. 2, pp. 1-9, 2021. [
DOI:10.1109/JSTQE.2020.3018104] [
PMID]
17. Y. Wang, Z.T. Xie, Y. Sha, H.Y. Fu, and Q. Li, "Epsilon-near-zero based electro-optical and all-optical modulator for intensity and phase modulation," in 2023 Opto-Electronics and Communications Conference (OECC), pp. 1-3, 2023. [
DOI:10.1109/OECC56963.2023.10209693]
18. A. Rafatmah, M. Miri, and N. Yasrebi, "Energy-efficient high-speed optical modulators based on the interplay of epsilon-near-zero effect in graphene and ITO," J. Opt. Soc. Am. B, Vol. 41, pp. 2048-2059, 2024. [
DOI:10.1364/JOSAB.529432]
19. M.G. Wood, P.S. Finnegan, K.M. Musick, W.M. Mook, C.D. Nordquist, A.J. Grine, and D.K. Serkland, "Epsilon-near-zero modulators integrated on Si3N4 waveguides for Operation Shorter than 1µm," in Frontiers in Optics and Laser Science 2023 (FiO, LS), Technical Digest Series. Tacoma, Washington: Optica Publishing Group, paper JTu4A.79, 2023. [
DOI:10.1364/FIO.2023.JTu4A.79] [
]
20. B. Zhou, E. Li, Y. Bo, and A.X. Wang, "High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide," J. Light. Technol., Vol. 38, no. 13, pp. 3338-3345, 2020. [
DOI:10.1109/JLT.2020.2979192]
21. M.G. Wood, S. Campione, S. Parameswaran, T.S. Luk, J.R. Wendt, D.K. Serkland, and G.A. Keeler, "Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica, Vol. 5, no. 3, pp. 233-236, 2018. [
DOI:10.1364/OPTICA.5.000233]
22. Y. Kuang, Y. Liu, L. Tian, W. Han, and Z. Li, "A dual-slot electro-optic modulator based on an epsilon-near-zero oxide," IEEE Photonics J., Vol. 11, no. 4, pp. 1-12, 2019. [
DOI:10.1109/JPHOT.2019.2927756]
23. E. Alvear-Cabezón, T. Taliercio, S. Blin, R. Smaali, F. Gonzalez-Posada, A. Baranov, R. Teissier, and E. Centeno, "Epsilon near-zero all-optical terahertz modulator," Appl. Phys. Lett., Vol. 117, no. 11, pp. 111101(1-5), Sep. 2020. [
DOI:10.1063/5.0012206]
24. A.R. Davoyan, A.M. Mahmoud, and N. Engheta, "Optical isolation with epsilon-near-zero metamaterials," Opt. Express, Vol. 21, no. 3, pp. 3279-3286, 2013. [
DOI:10.1364/OE.21.003279] [
PMID]
25. M. Vafaei, M. Moradi, and G.H. Bordbar, "Highly sensitive refractive index sensing by epsilon near zero metamaterials," Optik, Vol. 244, pp. 167617(1-11), 2021. [
DOI:10.1016/j.ijleo.2021.167617]
26. H. Jiang, Y. Zhao, H. Ma, C. Feng, Y. Wu, W. Zhang, M. Chen, M. Wang, Y. Lian, Z. Cao, and J. Shao, "Polarization-independent, tunable, broadband perfect absorber based on semi-sphere patterned Epsilon-Near-Zero films," Appl. Surf. Sci., Vol. 596, pp. 153551(1-9), 2022. [
DOI:10.1016/j.apsusc.2022.153551]
27. S. Hayati Raad, M. Afshari-Bavil, and D. Liu, "Efficient and high-quality absorption enhancement using epsilon-near-zero cylindrical nano-shells constructed by graphene," Sci. Rep., Vol. 14, pp. 1-12 Mar. 2024. [
DOI:10.1038/s41598-024-55194-3] [
PMID] [
]
28. E.M. Smith, J. Chen, J.R. Hendrickson, J.W. Cleary, C. Dass, A.N. Reed, S. Vangala, and J. Guo., "Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption," Opt. Mater. Express, Vol. 10, no. 10, pp. 2439-2446, 2020. [
DOI:10.1364/OME.404169]
29. L. Cheng, K. Huang, F. Wu, and X. Li, "Tunable nonlinear meta-absorber based on epsilon-near-zero metamaterial," J. Russ. Laser Res., Vol. 44, no. 2, pp. 148-155, 2023. [
DOI:10.1007/s10946-023-10117-x]
30. H. Kondori, M. Ghadrdan, and M.A. Mansouri-Birjandi, "Bidirectional and broadband perfect absorber based on epsilon-near-zero material," Opt. Contin., Vol. 4, no. 4, pp. 745-755, 2025. [
DOI:10.1364/OPTCON.555669]
31. Z. Meng, H. Cao, and X. Wu, "New design strategy for broadband perfect absorber by coupling effects between metamaterial and epsilon-near-zero mode," Opt. Mater., Vol. 96, pp. 109347(1-7), 2019. [
DOI:10.1016/j.optmat.2019.109347]
32. A. Corona, D. Murthy, and J.-L. Olvera-Cervantes, "Novel microwave filters based on Epsilon Near Zero waveguide tunnels," Microw. Opt. Technol. Lett., Vol. 53, pp. 1706 1710, Aug. 2011. [
DOI:10.1002/mop.26147]
33. H. Mu, C. Ding, T. Yi, Y. Wang, F. Meng, and J. Wang, "Tunable bandpass filter based on epsilon-near-zero metamaterials using liquid crystals," Liq. Cryst., Vol. 51, no. 5, pp. 773 782, Apr. 2024. [
DOI:10.1080/02678292.2024.2325573]
34. J. Kyoung, D. Park, S. Byun, J. Lee, S. Choi, S. Park, and S. Hwang, "Epsilon-near-zero meta-lens for high resolution wide-field imaging," Opt. Express, Vol. 22, Dec. 2014. [
DOI:10.1364/OE.22.031875] [
PMID]
35. A. Anopchenko, L. Tao, C. Arndt, and H. (Ho W. Lee, "Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness," ACS Photonics, Vol. 5, pp. 2631-2637, Apr. 2018. [
DOI:10.1021/acsphotonics.7b01373]
36. J. Wu, M. Clementi, C. Huang, F. Ye, H. Fu, L. Lu, S. Zhang, Q. Li, and C.-S. Brès, "Thermo-optic epsilon-near-zero effects," Nat. Commun., Vol. 15, no. 1, pp. 794(1-9), 2024. [
DOI:10.1038/s41467-024-45054-z] [
PMID] [
]
37. Q. Wang, T. Liu, L. Li, C. Huang, J. Wang, M. Xiao, Y. Li, and W. Li, "Ultra-broadband directional thermal emission," Vol. 13, no. 5, pp. 793-801, 2024. [
DOI:10.1515/nanoph-2023-0742] [
PMID] [
]
38. I. Liberal and N. Engheta, "Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies.," Proc. Natl. Acad. Sci. U. S. A., Vol. 115, no. 12, pp. 2878-2883, Mar. 2018. [
DOI:10.1073/pnas.1718264115] [
PMID] [
]
39. Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photonics, Vol. 2, no. 2, pp. 183-188, Feb. 2015. [
DOI:10.1021/ph500410u]
40. M. Yoo, H.K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors Actuators B Chem., Vol. 222, pp. 173-180, 2016. [
DOI:10.1016/j.snb.2015.08.074]
41. H. Zhou, D. Hu, G. Jia, J. Ji, X. Mu, X. Liu, and Z. Shang, "A novel chemical sensor using metamaterial absorber for methanol sensing aplications," The 7th International Multidisciplinary Conference on Optofluidics, pp. 1-2, 2017.
42. C. Chen, L. Zhou, J. Yu, Y. Wang, S. Nie, S. Zhu, and J. Zhu, "Dual functional asymmetric plasmonic structures for solar water purification and pollution detection," Nano Energy, Vol. 51, pp. 451-456, 2018. [
DOI:10.1016/j.nanoen.2018.06.077]
43. S. Zhou, Z. Shen, R. Kang, S. Ge, and W. Hu, "Liquid crystal tunable dielectric metamaterial absorber in the terahertz range," Appl. Sci., Vol. 8, no. 11, pp. 1-7, 2018. [
DOI:10.3390/app8112211]
44. H. Wang, Y. Yang, and L. Wang, "Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer," Appl. Phys. Lett., Vol. 105, no. 7, pp. 71907(1-5), Aug. 2014. [
DOI:10.1063/1.4893616]
45. Z. Song, A. Chen, and J. Zhang, "Terahertz switching between broadband absorption and narrowband absorption," Opt. Express, Vol. 28, pp. 2037-2044, Jan. 2020. [
DOI:10.1364/OE.376085] [
PMID]
46. Q. Wang, B. Li, L. Zeng, Q. Yang, X. Zhang, R. Wen, and C. Deng, "Switchable quadruple narrowband to broadband terahertz perfect absorber based on graphene and VO2 metamaterials," Diam. Relat. Mater., Vol. 142, pp. 110832(1-8), 2024. [
DOI:10.1016/j.diamond.2024.110832]
47. Y.-Y. Cheng, D. Meng, M.-Y. Xu, Y. Liu, P.-P. Zhuang, D. Lin, J. Liu, and Y.-S. Chen,, "Wide-band and narrow-band switchable terahertz absorber based on graphene," Results Phys., Vol. 52, pp. 106838(1-10), 2023. [
DOI:10.1016/j.rinp.2023.106838]
48. F. Wang, H. Gao, W. Peng, R. Li, S. Chu, L. Yu, and Q. Wang, "Bidirectional band-switchable nano-film absorber from narrowband to broadband," Opt. Express, Vol. 29, no. 4, pp. 5110-5120, 2021. [
DOI:10.1364/OE.417780] [
PMID]
49. S. Campione, I. Brener, and F. Marquier, "Theory of epsilon-near-zero modes in ultrathin films," Phys. Rev. B, Vol. 91, no. 12, pp. 121408(1-5), Mar. 2015. [
DOI:10.1103/PhysRevB.91.121408]
50. E. D. Palik, Handbook of Optical Constants of Solids. New York, 1998.
51. L. Zhang, S. Love, A. Anopchenko, and H.W.H. Lee, "Hollow core optical fiber enabled by epsilon-near-zero material," Vol. 13, no. 7, pp. 1025-1031, 2024. [
DOI:10.1515/nanoph-2024-0025] [
PMID] [
]
52. Z. Wang, P. Zhou, and G. Zheng, "Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response," Results Phys., Vol. 14, pp. 102376(1-7), 2019. [
DOI:10.1016/j.rinp.2019.102376]
53. S.F.J. Blair, J.S. Male, S.A. Cavill, C.P. Reardon, and T.F. Krauss, "Photonic characterisation of Indium Tin Oxide as a function of deposition conditions," Nanomaterials, Vol. 13, no. 13, pp. 1-13, 2023. [
DOI:10.3390/nano13131990] [
PMID] [
]
54. J. Wen, W. Sun, B. Liang, C. He, K. Xiong, Z. Wu, H. Zhang, H. Yu, Q. Wang, Y. Pan, Y. Zhang, and Z. Liu, "Dynamically switchable broadband-narrowband terahertz metamaterial absorber based on vanadium dioxide and multilayered structure," Opt. Commun., Vol. 545, pp. 129710(1-8), 2023. [
DOI:10.1016/j.optcom.2023.129710]
55. Y. Liu, R. Huang, and Z. Ouyang, "Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene," Opt. Express, Vol. 29, pp. 20839-20850, Jun. 2021. [
DOI:10.1364/OE.428790] [
PMID]
56. D. Gong, J. Mei, N. Li, and Y. Shi, "Tunable metamaterial absorber based on VO2-graphene," Mater. Res. Express, Vol. 9, no. 11, pp. 115803(1-10), 2022. [
DOI:10.1088/2053-1591/ac9fac]