Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 213-220 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Joudaki A, Jaleh B, Shabanlou E, Azizian S. Enhancing Water Harvesting Efficiency Using Laser-Ablated Brass Surfaces with Hybrid Hydrophilic/Superhydrophobic Patterns. IJOP 2023; 17 (2) :213-220
URL: http://ijop.ir/article-1-566-en.html
1- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan
2- Department of Chemistry Physics, Faculty of Chemistry, Faculty of Chemistry and Petroleum Sciences Bu-Ali Sina University, Hamedan.
Abstract:   (697 Views)
In recent years, global climate change and population growth have exacerbated freshwater shortages. To address this issue, harvesting water from atmospheric fog has emerged as a promising technique. Inspired by natural processes, the fabrication of hybrid hydrophilic (HI) and superhydrophobic (SHB) surfaces has gained significant attention for enhancing water harvesting efficiency. This study presents a simple, cost-effective laser ablation method for creating wettability contrast surfaces with triangular and parallel patterns on brass metal. Through X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), we investigated the structural and morphological effects on the wettability behavior of irradiated and non-irradiated brass. Additionally, we examined the influence of pattern shapes on water harvesting efficiency. Our findings indicate that triangular patterns significantly enhance water harvesting performance compared to parallel patterns.
Full-Text [PDF 768 kb]   (246 Downloads)    
Type of Study: Research | Subject: Lasers, Optical Amplifiers, Laser Optics
Received: 2024/06/17 | Revised: 2024/10/12 | Accepted: 2024/09/20 | Published: 2024/09/22

References
1. N. Mancosu, R.L. Snyder, G. Kyriakakis, and D. Spano, "Water scarcity and future challenges for food production," Water, Vol. 7, pp. 975-992, 2015. [DOI:10.3390/w7030975]
2. M.M. Mekonnen and A.Y. Hoekstra, "Four billion people facing severe water scarcity," Sci. Adv., Vol. 2, pp. 1500323(1-6), 2016. [DOI:10.1126/sciadv.1500323]
3. M.T. Van Vliet, E.R. Jones, M. Flörke, W.H. Franssen, N. Hanasaki, Y. Wada, and J.R. Yearsley, "Global water scarcity including surface water quality and expansions of clean water technologies," Environ. Res. Lett., Vol. 16, pp. 024020(1-12), 2021. [DOI:10.1088/1748-9326/abbfc3]
4. W.B. Krantz and T.H. Chong, "Centrifugal reverse osmosis (CRO)−a novel energy-efficient membrane process for desalination near local thermodynamic equilibrium," J. Membr. Sci., Vol. 637, pp. 119630(1-12), 2021. [DOI:10.1016/j.memsci.2021.119630]
5. B. Vital, E.V. Torres, T. Sleutels, M.C. Gagliano, M. Saakes, and H.V. Hamelers, "Fouling fractionation in reverse electrodialysis with natural feed waters demonstrates dual media rapid filtration as an effective pre-treatment for fresh water," Desalination, Vol. 518, pp. 115277(1-10), 2021. [DOI:10.1016/j.desal.2021.115277]
6. S. Korkmaz and İ.A. Kariper, "Fog harvesting against water shortage," Environ. Chem. Lett., Vol. 18, pp. 361-375, 2020. [DOI:10.1007/s10311-019-00950-5]
7. K. Hou, X. Li, Q. Li, and X. Chen, "Tunable wetting patterns on superhydrophilic/-superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy," Adv. Mater. Interfaces, Vol. 7, pp. 1901683(1-7), 2020. [DOI:10.1002/admi.201901683]
8. H.K. Raut, A.S. Ranganath, A. Baji, and K.L. Wood, "Bio-inspired hierarchical topography for texture driven fog harvesting," Appl. Surf. Sci., Vol. 465, pp. 362-368, 2019. [DOI:10.1016/j.apsusc.2018.09.134]
9. J. Zhang, Y. Zhang, J. Yong, X. Hou, and F. Chen, "Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting," Opt. Laser Technol., Vol. 146, pp. 107593(1-6), 2022. [DOI:10.1016/j.optlastec.2021.107593]
10. N. Bakhtiari, S. Azizian, and B. Jaleh, "Hybrid superhydrophobic/hydrophilic patterns deposited on glass by laser-induced forward transfer method for efficient water harvesting" J. Colloid Interface Sci., Vol. 625, pp. 383-396, 2022. [DOI:10.1016/j.jcis.2022.06.039]
11. S. Ghorabi, F.Z. Ashtiani, M. Karimi, A. Fouladitajar, B. Yousefi, and F. Dorkalam, "Development of a novel dual-bioinspired method for synthesis of a hydrophobic/-hydrophilic polyethersulfone coated membrane for membrane distillation," Desalination, Vol. 517, pp. 115242(1-17), 2021. [DOI:10.1016/j.desal.2021.115242]
12. E. Shabanlou, B. Jaleh, B.F. Mohazzab, O. Kakuee, R. Golbedaghi, and Y. Orooji, "TiN formation on Ti target by laser ablation method under different N2 gas pressure and laser scanning cycles: A wettability study," Surfaces Interfaces, Vol. 27, pp. 101509(1-16), 2021. [DOI:10.1016/j.surfin.2021.101509]
13. L. Peng, K. Chen, D. Chen, J. Chen, J. Tang, S. Xiang, W. Chen, P. Liu, F. Zheng, and J. Shi, "Study on the enhancing water collection efficiency of cactus-and beetle-like biomimetic structure using UV-induced controllable diffusion method and 3D printing technology," RSC Adv., Vol. 11, pp. 14769-14776, 2021. [DOI:10.1039/D1RA00652E]
14. X. Wang, S. Handschuh-Wang, Y. Xu, L. Xiang, Z. Zhou, T. Wang, and Y. Tang, "Hierarchical micro/nanostructured diamond gradient surface for controlled water transport and fog collection," Adv. Mater. Interfaces, Vol. 8, pp. 2100196(1-9), 2021. [DOI:10.1002/admi.202100196]
15. R. Zhu, M. Liu, Y. Hou, L. Zhang, M. Li, D. Wang, D. Wang, and S. Fu, "Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting," ACS Appl. Mater. Interfaces, Vol. 2, pp. 50113-50125, 2020. [DOI:10.1021/acsami.0c12646]
16. Y. Huangping, M.R.B.A. Rashid, S.Y. Khew, L. Fengping, and H. Minghui, "Realization of laser textured brass surface via temperature tuning for surface wettability transition," Opto-Electron. Eng., Vol. 44, pp. 587-592, 2017.
17. X. Lu, L. Kang, B. Yan, T. Lei, G. Zheng, H. Xie, J. Sun, and K. Jiang, "Evolutiosn of a Superhydrophobic H59 Brass Surface by Using Laser Texturing via Post Thermal Annealing," Micromachines, Vol. 11, pp. 1057(1-14), 2020. [DOI:10.3390/mi11121057]
18. X. Li, Y. Jiang, Z. Zhang, Z. Jiang, J. Lian, and L. Ren, "Facile and environmentally-friendly fabrication of underwater superaerophobic and superaerophilic metallic surfaces through laser ablation and heat treatment," Colloids Surf. A: Physiochem Eng. Asp., Vol. 621, pp. 126547(1-13), 2021. [DOI:10.1016/j.colsurfa.2021.126547]
19. A. Ryzhenkov, M. Dasaev, A. Kurshakov, and O. Ryzhenkov, S. Grigoriev, M. Lukin, "Production of superhydrophobous surfaces using laser texturing," Inter. J. Recent Technol. Eng., Vol. 8, pp. 746-755, 2017.
20. M.N. Ashfold, F. Claeyssens, G.M. Fuge, and S.J. Henley, "Pulsed laser ablation and deposition of thin films," Chem. Soc. Rev., Vol. 33, pp. 23-31, 2004. [DOI:10.1039/b207644f]
21. S. Razi, M. Mollabashi, and K. Madanipour, "Laser processing of metallic biomaterials: An approach for surface patterning and wettability control," Eur. Phys. J. Plus, Vol. 130, pp. 247(1-12), 2015. [DOI:10.1140/epjp/i2015-15247-5]
22. H. Lu, W. Shi, Y. Guo, W. Guan, C. Lei, and G. Yu, "Materials engineering for atmospheric water harvesting: progress and perspectives," Adv. Mater., Vol. 34, pp. 2110079(1-16), 2022. [DOI:10.1002/adma.202110079]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb