1. M. Castillejo, M. Martín, M. Oujja, J. Santamaría, S. Diego, R. Torres, A. Manousaki, V. Zafiropulos, O.F. Van den Brink, R.M. Heeren, and R. Teule, "Evaluation of the chemical and physical changes induced by KrF laser irradiation of tempera paints," J. Cult. Herit., Vol. 4, pp. 257-263, 2003. [
DOI:10.1016/S1296-2074(02)01143-3]
2. C. Bae, H. Shin, and K. Nielsch, "Surface modification and fabrication of 3D nanostructures by atomic layer deposition," Mater. Res. Soc. (MRS) Bulletin, Vol. 36, pp. 887-897, 2011. [
DOI:10.1557/mrs.2011.264]
3. L. Xia. "Importance of nanostructured surfaces," Bioceramics. Elsevier, pp. 5-24, 2021. [
DOI:10.1016/B978-0-08-102999-2.00002-8]
4. S. Sohrabi, H. Pazokian, B. Ghafary, and M. Mollabashi, "Super-hydrophilic nano-structured surface with antibacterial properties," Opt. Mater. Express, Vol 14, pp. 116-124, 2023. [
DOI:10.1364/OME.505843]
5. G. Ou, P. Fan, H. Zhang, K. Huang, C. Yang, W. Yu, H. Wei, M. Zhong, H. Wu, and Y. Li, "Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting," Nano Energy, Vol. 35, pp. 207-214, 2017. [
DOI:10.1016/j.nanoen.2017.03.049]
6. M. Stafe, A. Marcu, and N. Puscas. Pulsed laser ablation of solids, Springer, Vol. 10, PP. 978-983, 2014. [
DOI:10.1007/978-3-642-40978-3]
7. S. Ravi‐Kumar, B. Lies, X. Zhang, H. Lyu, and H. Qin, "Laser ablation of polymers: a review," Polymer Int., Vol. 68, pp. 1391-1401, 2019. [
DOI:10.1002/pi.5834]
8. W. Pacquentin, N. Caron, and R. Oltra, "Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance," Appl. Surf. Sci., Vol. 288, pp. 34-39, 2014. [
DOI:10.1016/j.apsusc.2013.09.086]
9. C.Y. Cui, X.G. Cui, Y.K. Zhang, Q. Zhao, J.Z. Lu, J.D. Hu, Y.M. Wang. "Microstructure and corrosion behavior of the AISI 304 stainless steel after Nd: YAG pulsed laser surface melting," Surf. Coat. Technology, Vol. 206, pp. 1146-1154, 2011. [
DOI:10.1016/j.surfcoat.2011.08.013]
10. L.J Yang, J. Tang, M.L. Wang, Y. Wang, and Y.B. Chen, "Surface characteristic of stainless-steel sheet after pulsed laser forming." Appl. Surf. Sci., Vol. 256, pp. 7018 7026, 2010. [
DOI:10.1016/j.apsusc.2010.05.017]
11. J. Ghorbani, J. Li, A.K. Srivastava, "Application of optimized laser surface re-melting process on selective laser melted 316L stainless steel inclined parts," J. Manuf. Process., Vol. 56, pp. 726-734, 2020. [
DOI:10.1016/j.jmapro.2020.05.025]
12. H. Pazokian, "Theoretical and experimental investigations of the influence of overlap between the laser beam tracks on channel profile and morphology in pulsed laser machining of polymers," Optik, Vol. 171, pp. 431-436, 2018. [
DOI:10.1016/j.ijleo.2018.06.066]
13. N.B. Dahotre, S.R. Paital, A.N Samant, and C. Daniel, "Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication," Philos. Transact. A Math. Phys. Eng. Sci., Vol. 368, pp. 1863-1889, 2010. [
DOI:10.1098/rsta.2010.0003] [
PMID]
14. A. Kumar, R. Sharma, S. Kumar, and P. Verma, "A review on machining performance of AISI 304 steel," Mater. Today, Vol. 56, pp. 2945 2951, 2022. [
DOI:10.1016/j.matpr.2021.11.003]
15. M. Kaladhar, K.V. Subbaiah, and CH.S. Rao, "Machining of austenitic stainless steels-a review," Int. J. Mach. Mach. Mater., Vol. 12, pp. 178-192, 2012. [
DOI:10.1504/IJMMM.2012.048564]
16. R.J. Narayan, Medical Application of Stainless steels, ASM Handbook, Vol. 23, pp.199-210, 2012. [
DOI:10.31399/asm.hb.v23.a0005673] [
PMID]
17. V. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman, "Surface morphology effects on the light-controlled wettability of ZnO nanostructures," Appl. Surf. Sci., Vol. 258, pp. 8146-8152, 2012. [
DOI:10.1016/j.apsusc.2012.05.011]
18. V. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman, "Surface morphology effects on the light-controlled wettability of ZnO nanostructures," Appl. Surf. Sci., Vol. 258, pp. 8146-8152, 2012. [
DOI:10.1016/j.apsusc.2012.05.011]
19. C.G. Jothi Prakash, and R. Prasanth, "Approaches to design a surface with tunable wettability: a review on surface properties," J. Mater. Sci., Vol. 56, pp.108-135, 2021. [
DOI:10.1007/s10853-020-05116-1]
20. E.J. Falde, S.T. Yohe, Y.L. Colson, and M.W. Grinstaff, "Superhydrophobic materials for biomedical applications," Biomater., Vol. 104, pp. 87-103, 2016. [
DOI:10.1016/j.biomaterials.2016.06.050] [
PMID] [
]
21. Z. Xiong, H. Lin, Y. Zhong, Y. Qin, T. Li, and F. Liu, "Robust superhydrophilic polylactide (PLA) membranes with a TiO 2 nano-particle inlaid surface for oil/water separation." J. Mater. Chem. A, Vol. 5, pp. 6538-6545, 2017. [
DOI:10.1039/C6TA11156D]
22. H. Li, X. Feng, and K. Zhang, "Study of the classical cassie theory and Wenzel theory used in nanoscale," J. Bionic Eng., Vol. 18, pp. 398 408, 2021. [
DOI:10.1007/s42235-021-0029-8]
23. H.Y. Erbil and C. Elif Cansoy, "Range of applicability of the Wenzel and Cassie− Baxter equations for superhydrophobic surfaces," Langmuir, Vol. 25, pp. 14135-14145, 2009. [
DOI:10.1021/la902098a] [
PMID]