Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 205-212 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sohrabi S, Pazokian H, Montazerolghaem M. Laser Treated Lines Overlapping on Surface Modification of 304 Stainless Steel. IJOP 2023; 17 (2) :205-212
URL: http://ijop.ir/article-1-565-en.html
1- Department of Physics, Iran University of Science and Technology, Tehran, Iran
2- bPhotonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
Abstract:   (500 Views)
Laser pulse overlapping (LPO) is an important factor affect the behavior of the laser treated surfaces. For laser surface treatment especially at high fluences, the laser beam must be focused to reach the desired fluence. Then laser beam or sample scanning in 2 directions is done to treat a surface area. In this paper, effect of the distance between laser treated lines (scanned in x direction) on the surface properties including morphological changes and wettability modifications of 304 stainless steel is investigated. The results show that the morphology and chemistry of the surface are influenced effectively by changing the overlap between laser treated line on the surface. Then, it should be considered as an important parameter in laser modification of a large surface with focused laser beam.
Full-Text [PDF 748 kb]   (229 Downloads)    
Type of Study: Research | Subject: Interaction of Light and Matter
Received: 2024/06/15 | Revised: 2024/10/12 | Accepted: 2024/08/22 | Published: 2024/08/24

References
1. M. Castillejo, M. Martín, M. Oujja, J. Santamaría, S. Diego, R. Torres, A. Manousaki, V. Zafiropulos, O.F. Van den Brink, R.M. Heeren, and R. Teule, "Evaluation of the chemical and physical changes induced by KrF laser irradiation of tempera paints," J. Cult. Herit., Vol. 4, pp. 257-263, 2003. [DOI:10.1016/S1296-2074(02)01143-3]
2. C. Bae, H. Shin, and K. Nielsch, "Surface modification and fabrication of 3D nanostructures by atomic layer deposition," Mater. Res. Soc. (MRS) Bulletin, Vol. 36, pp. 887-897, 2011. [DOI:10.1557/mrs.2011.264]
3. L. Xia. "Importance of nanostructured surfaces," Bioceramics. Elsevier, pp. 5-24, 2021. [DOI:10.1016/B978-0-08-102999-2.00002-8]
4. S. Sohrabi, H. Pazokian, B. Ghafary, and M. Mollabashi, "Super-hydrophilic nano-structured surface with antibacterial properties," Opt. Mater. Express, Vol 14, pp. 116-124, 2023. [DOI:10.1364/OME.505843]
5. G. Ou, P. Fan, H. Zhang, K. Huang, C. Yang, W. Yu, H. Wei, M. Zhong, H. Wu, and Y. Li, "Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting," Nano Energy, Vol. 35, pp. 207-214, 2017. [DOI:10.1016/j.nanoen.2017.03.049]
6. M. Stafe, A. Marcu, and N. Puscas. Pulsed laser ablation of solids, Springer, Vol. 10, PP. 978-983, 2014. [DOI:10.1007/978-3-642-40978-3]
7. S. Ravi‐Kumar, B. Lies, X. Zhang, H. Lyu, and H. Qin, "Laser ablation of polymers: a review," Polymer Int., Vol. 68, pp. 1391-1401, 2019. [DOI:10.1002/pi.5834]
8. W. Pacquentin, N. Caron, and R. Oltra, "Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance," Appl. Surf. Sci., Vol. 288, pp. 34-39, 2014. [DOI:10.1016/j.apsusc.2013.09.086]
9. C.Y. Cui, X.G. Cui, Y.K. Zhang, Q. Zhao, J.Z. Lu, J.D. Hu, Y.M. Wang. "Microstructure and corrosion behavior of the AISI 304 stainless steel after Nd: YAG pulsed laser surface melting," Surf. Coat. Technology, Vol. 206, pp. 1146-1154, 2011. [DOI:10.1016/j.surfcoat.2011.08.013]
10. L.J Yang, J. Tang, M.L. Wang, Y. Wang, and Y.B. Chen, "Surface characteristic of stainless-steel sheet after pulsed laser forming." Appl. Surf. Sci., Vol. 256, pp. 7018 7026, 2010. [DOI:10.1016/j.apsusc.2010.05.017]
11. J. Ghorbani, J. Li, A.K. Srivastava, "Application of optimized laser surface re-melting process on selective laser melted 316L stainless steel inclined parts," J. Manuf. Process., Vol. 56, pp. 726-734, 2020. [DOI:10.1016/j.jmapro.2020.05.025]
12. H. Pazokian, "Theoretical and experimental investigations of the influence of overlap between the laser beam tracks on channel profile and morphology in pulsed laser machining of polymers," Optik, Vol. 171, pp. 431-436, 2018. [DOI:10.1016/j.ijleo.2018.06.066]
13. N.B. Dahotre, S.R. Paital, A.N Samant, and C. Daniel, "Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication," Philos. Transact. A Math. Phys. Eng. Sci., Vol. 368, pp. 1863-1889, 2010. [DOI:10.1098/rsta.2010.0003] [PMID]
14. A. Kumar, R. Sharma, S. Kumar, and P. Verma, "A review on machining performance of AISI 304 steel," Mater. Today, Vol. 56, pp. 2945 2951, 2022. [DOI:10.1016/j.matpr.2021.11.003]
15. M. Kaladhar, K.V. Subbaiah, and CH.S. Rao, "Machining of austenitic stainless steels-a review," Int. J. Mach. Mach. Mater., Vol. 12, pp. 178-192, 2012. [DOI:10.1504/IJMMM.2012.048564]
16. R.J. Narayan, Medical Application of Stainless steels, ASM Handbook, Vol. 23, pp.199-210, 2012. [DOI:10.31399/asm.hb.v23.a0005673] [PMID]
17. V. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman, "Surface morphology effects on the light-controlled wettability of ZnO nanostructures," Appl. Surf. Sci., Vol. 258, pp. 8146-8152, 2012. [DOI:10.1016/j.apsusc.2012.05.011]
18. V. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman, "Surface morphology effects on the light-controlled wettability of ZnO nanostructures," Appl. Surf. Sci., Vol. 258, pp. 8146-8152, 2012. [DOI:10.1016/j.apsusc.2012.05.011]
19. C.G. Jothi Prakash, and R. Prasanth, "Approaches to design a surface with tunable wettability: a review on surface properties," J. Mater. Sci., Vol. 56, pp.108-135, 2021. [DOI:10.1007/s10853-020-05116-1]
20. E.J. Falde, S.T. Yohe, Y.L. Colson, and M.W. Grinstaff, "Superhydrophobic materials for biomedical applications," Biomater., Vol. 104, pp. 87-103, 2016. [DOI:10.1016/j.biomaterials.2016.06.050] [PMID] []
21. Z. Xiong, H. Lin, Y. Zhong, Y. Qin, T. Li, and F. Liu, "Robust superhydrophilic polylactide (PLA) membranes with a TiO 2 nano-particle inlaid surface for oil/water separation." J. Mater. Chem. A, Vol. 5, pp. 6538-6545, 2017. [DOI:10.1039/C6TA11156D]
22. H. Li, X. Feng, and K. Zhang, "Study of the classical cassie theory and Wenzel theory used in nanoscale," J. Bionic Eng., Vol. 18, pp. 398 408, 2021. [DOI:10.1007/s42235-021-0029-8]
23. H.Y. Erbil and C. Elif Cansoy, "Range of applicability of the Wenzel and Cassie− Baxter equations for superhydrophobic surfaces," Langmuir, Vol. 25, pp. 14135-14145, 2009. [DOI:10.1021/la902098a] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb