Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 175-184 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roostaei N, Hamidi S M. Antibacterial Plasmonic Nanostructures Based on Ag Nanoparticles for Tritanopia Color Vision Deficiency (CVD) Management. IJOP 2023; 17 (2) :175-184
URL: http://ijop.ir/article-1-557-en.html
1- Magneto-plasmonics Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Abstract:   (501 Views)
Color vision deficiency (CVD), or color blindness, is a prevalent ocular disorder that hinders the recognition of different colors, affecting many people worldwide (8−10% of males and 0.4−0.5% of females). Recently, there has been a significant focus on plasmonic nanostructures as an alternative to chemical dyes for managing color blindness due to their remarkable characteristics and the tunability of plasmonic resonances. In this work, the plasmonic glasses based on silver nanoparticles with a TiO2 thin layer coating were fabricated using the sputtering technique and proposed for blue-yellow (tritanopia) CVD management. The proposed plasmonic glasses based on silver nanoparticles are more selective than commercial Enchroma glasses because of the tunability of plasmonic properties of silver nanoparticles by controlling their morphology, which provides insights for applications of color vision deficiency improvement. Also, the antibacterial activity of the proposed plasmonic glasses based on silver nanoparticles was investigated against E. coli and S. aureus bacteria, which have exhibited effective antibacterial properties. The results indicate that the silver nanoparticle-based glasses not only aid in tritanopia management but also offer potential for antibacterial applications such as implant coatings.
Full-Text [PDF 717 kb]   (204 Downloads)    
Type of Study: Research | Subject: Nanophotonics and Nanostructures
Received: 2024/03/18 | Revised: 2024/10/12 | Accepted: 2024/08/22 | Published: 2024/08/24

References
1. S.H.A.H. Ahsana, R. Hussain, M. Fareed, and M. Afzal, "Prevalence of red-green color vision defects among Muslim males and females of Manipur, India," Iran. J. Publ. Health, Vol. 42, no. 1, pp. 16-24, 2013.
2. W. Li and D.R. Flatla, "30 Years Later: Has CVD Research Changed the World?" In Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, pp. 584-590, 2019. [DOI:10.1145/3308561.3354612]
3. M.P. Simunovic, "Colour vision deficiency," Eye, Vol. 24, no. 5, pp. 747-755, 2010. [DOI:10.1038/eye.2009.251] [PMID]
4. J.M. Steward and B.L. Cole, "What do color vision defectives say about everyday tasks?" Optomet. Vision Sci., Vol. 66, no. 5, pp. 288 295, 1989. [DOI:10.1097/00006324-198905000-00006] [PMID]
5. B. Wong, "Points of view: Color blindness," Nature Methods, Vol. 8, no. 6, pp. 441, 2011. [DOI:10.1038/nmeth.1618] [PMID]
6. A. Seebeck, "Ueber den bei manchen Personen vorkommenden Mangel an Farbensinn," Annalen der Physik, Vol. 118, no. 10, pp. 177 233, 1837. [DOI:10.1002/andp.18371181002]
7. A.R. Badawy, M.U. Hassan, M. Elsherif, Z. Ahmed, A.K. Yetisen, and H. Butt, "Contact lenses for color blindness," Adv. Healthcare Mater., Vol. 7, no. 12, pp. 1800152(1-7), 2018. [DOI:10.1002/adhm.201800152] [PMID] []
8. A.E. Salih, M. Elsherif, F. Alam, A.K. Yetisen, and H. Butt, "Gold nanocomposite contact lenses for color blindness management," ACS nano, Vol. 15, no. 3, pp. 4870-4880, 2021. [DOI:10.1021/acsnano.0c09657] [PMID] []
9. N. Roostaei and S.M. Hamidi, "Plasmonic Eyeglasses Based on Gold Nanoparticles for Color Vision Deficiency Management," ACS Appl. Nano Mater., Vol. 5, no. 12, pp. 18788 18798, 2022. [DOI:10.1021/acsanm.2c04553]
10. S. Karepov and T. Ellenbogen, "Metasurface-based contact lenses for color vision deficiency," Opt. Lett., Vol. 45, no. 6, pp. 1379-1382, 2020. [DOI:10.1364/OL.384970] [PMID]
11. S.M. Hamidi and N. Roostaei, "New-generation of PDMS-based Lenses for Color Blindness management," Int. J. Biophoton. Biomed. Eng., Vol. 2, no. 1, pp. 31-36, 2022.
12. H. Yazdanfar, S.M. Hamidi, N. Roostaei, Y. Mazhdi, and A. Soheilian, "Modifying the Soft Contact Lens for Color Vision Deficiency Correction by Plasmonic Gold Nanoparticles," Int. J. Opt. Photon., Vol. 16, no. 1, pp. 47-60, 2022.
13. N. Ibrahim, N.D. Jamaluddin, L.L. Tan, and N. Y. Mohd Yusof, "A review on the development of gold and silver nanoparticles-based biosensor as a detection strategy of emerging and pathogenic RNA virus," Sensors, Vol. 21, no. 15, pp. 5114(1-29), 2021. [DOI:10.3390/s21155114] [PMID] []
14. S.K. Nune, P. Gunda, P.K. Thallapally, Y.Y. Lin, M. Laird Forrest, and C.J. Berkland, "Nanoparticles for biomedical imaging," Expert Opinion Drug Del., Vol. 6, no. 11, pp. 1175-1194, 2009. [DOI:10.1517/17425240903229031] [PMID] []
15. P. Prasher, M. Sharma, H. Mudila, G. Gupta, A. K. Sharma, D. Kumar, H.A. Bakshi, P. Negi, D.N. Kapoor, D.K. Chellappan, M.M. Tambuwala, and K. Dua, "Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery," Colloid Interface Sci. Commun., Vol. 35, pp. 100244(1-13), 2020. [DOI:10.1016/j.colcom.2020.100244]
16. G. Ro, Y. Choi, M. Kang, S. Hong, and Y. Kim, "Novel color filters for the correction of red-green color vision deficiency based on the localized surface plasmon resonance effect of Au nanoparticles," Nanotechnol., Vol. 30, no. 40, pp. 405706(1-9), 2019. [DOI:10.1088/1361-6528/ab2d4b] [PMID]
17. Y. Tian, H. Tang, T. Kang, X. Guo, J. Wang, and J. Zang, "Inverse-designed aid lenses for precise correction of color vision deficiency," Nano Lett., Vol. 22, no. 5, pp. 2094-2102, 2022. [DOI:10.1021/acs.nanolett.2c00262] [PMID]
18. N. Roostaei and S.M. Hamidi, "Two-dimensional biocompatible plasmonic contact lenses for color blindness correction," Sci. Rep., Vol. 12, no. 1, pp. 2037-2044, 2022. [DOI:10.1038/s41598-022-06089-8] [PMID] []
19. A.E. Salih, A. Shanti, M. Elsherif, F. Alam, S. Lee, K. Polychronopoulou, F. Almaskari, H. AlSafar, A.K. Yetisen, and H. Butt, "Silver nanoparticle‐loaded contact lenses for blue‐yellow color vision deficiency," Phys. Status Solidi (a), Vol. 219, no. 1, pp. 2100294(1-11), 2022. [DOI:10.1002/pssa.202100294]
20. L. Bertel, D.A. Miranda, and J.M. García-Martín, "Nanostructured titanium dioxide surfaces for electrochemical biosensing," Sensors, Vol. 21, no. 18, pp. 6167(1-24), 2021. [DOI:10.3390/s21186167] [PMID] []
21. H.D. Jang, S.K. Kim, H. Chang, K.M. Roh, J. . Choi, and J. Huang, "A glucose biosensor based on TiO2-graphene composite," Biosens. Bioelectron, Vol. 38, no. 1, pp. 184-188, 2012. [DOI:10.1016/j.bios.2012.05.033] [PMID]
22. S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, "Biomedical applications of TiO2 nanostructures: recent advances," Int. J. Nanomed., Vol. 15, pp. 3447-3470, 2020. [DOI:10.2147/IJN.S249441] [PMID] []
23. T. Verdier, M. Coutand, A. Bertron, and C. Roques, "Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects," Coat., Vol. 4, no. 3, pp. 670-686, 2014. [DOI:10.3390/coatings4030670]
24. M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, and G. Padeletti, "Third-generation biosensors based on TiO2 nanostructured films," Mater. Sci. Eng. C, Vol. 26, no. 5-7, pp. 947-951, 2006. [DOI:10.1016/j.msec.2005.09.080]
25. N. Roostaei and S. M. Hamidi, "All-dielectric achiral etalon-based metasurface: Ability for glucose sensing," Opt. Commun., Vol. 527: pp. 128971-128980, 2023. [DOI:10.1016/j.optcom.2022.128971]
26. J. Wang, C. Zhang, Y. Yang, A. Fan, R. Chi, J. Shi, and X. Zhang, "Poly (vinyl alcohol)(PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing," Appl. Surface Sci., Vol. 494, pp. 708-720, 2019. [DOI:10.1016/j.apsusc.2019.07.224]
27. V.K.H. Bui, D. Park, and Y.C. Lee, "Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends," Polymers, Vol. 9, no. 1, pp. 21(1-24), 2017. [DOI:10.3390/polym9010021] [PMID] []
28. H. Haugen and S. Lyngstadaas, "Antibacterial effects of titanium dioxide in wounds," in Wound Healing Biomaterials, Elsevier. pp. 439-450, 2016. [DOI:10.1016/B978-1-78242-456-7.00021-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb