Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 155-164 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ranjbaran M, sedeyan R, Zamani A, Tehranchi M M, Khalkhali S M H, Hamidi S M. Atomic Gradiometers for Accuracy Enhancement of Heart Magnetic Fields Measurement. IJOP 2023; 17 (2) :155-164
URL: http://ijop.ir/article-1-555-en.html
1- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
3- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran ,Physics Department, Shahid Beheshti University, Tehran, Iran
4- Department of Physics, Kharazmi University, Tehran, Iran
Abstract:   (731 Views)
The measurement of magnetic field generated by heart activity is crucial for the diagnosis and treatment of heart diseases and failures. Atomic magnetometers are an excellent choice for detecting bio-magnetic fields due to their comparable sensitivity to superconducting quantum interference devices, lower manufacturing costs, and lack of requirement for low temperatures. These magnetometers detect the magnetic field resulting from heart activity by measuring the Zeeman energy splitting and changes in laser light intensity as it passes through an alkali metal vapor cell. To improve the sensitivity of the measurements, this study presents a gradiometer design that utilizes two atomic magnetometers to eliminate environmental magnetic noise. By using a derivative technique, the homogeneous noises in both magnetometer channels are effectively eliminated. The gradiometer is capable of detecting the magnetic field produced by a frog's heart with a sensitivity of 860 fT/√Hz even without magnetic shielding and in the presence of the Earth's field. This gradiometer design can be expanded to include multiple channels for mapping the heart's magnetic field.
Full-Text [PDF 777 kb]   (297 Downloads)    
Type of Study: Research | Subject: Magneto-Optics
Received: 2024/03/1 | Revised: 2024/10/12 | Accepted: 2024/06/21 | Published: 2023/06/30

References
1. H. Koch, "SQUID magnetocardiography: Status and perspectives," J. IEEE Trans. Appl. Supercond., Vol. 11, pp. 49-59, 2001.‏ [DOI:10.1109/77.919284]
2. P.M. Vetoshko, N.A. Gusev, D.A. Chepurnova, E.V. Samoilova, I.I. Syvorotka, I.M. Syvorotka, and V.I. Belotelov. "Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations," Tech. Phys. Lett., Vol. 42, pp. 860-864, 2016.‏ [DOI:10.1134/S1063785016080289]
3. S. Morales, M.C. Corsi, W. Fourcault, F. Bertrand, G. Cauffet, C. Gobbo, F. Alcouffe, F. Lenouvel, M. Le Prado, F. Berger, and G. Vanzetto, "Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature," Phys. Med. Biol., Vol. 62, pp. 7267-1-12, 2017.‏ [DOI:10.1088/1361-6560/aa6459] [PMID]
4. J.S. Kwong, B. Leithäuser, J.W. Park, and C.M. Yu. "Diagnostic value of magnetocardiography in coronary artery disease and cardiac arrhythmias: A review of clinical data," Int. J. Cardiol., Vol. 167, pp. 1835-1842, 2013.‏ [DOI:10.1016/j.ijcard.2012.12.056] [PMID]
5. T. Inaba, Y. Nakazawa, K. Yoshida, Y. Kato, A. Hattori, T. Kimura, and K. Aonuma. "Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital," Supercond. Sci. Technol., Vol. 30, pp. 114003(1-6), 2017. [DOI:10.1088/1361-6668/aa8c26]
6. K. Fujiwara, M. Oogane, A. Kanno, M. Imada, J. Jono, T. Terauchi, and Y. Ando. "Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors," Appl. Phys. Express, Vol. 11, pp. 023001(1-4), 2018.‏ [DOI:10.7567/APEX.11.023001]
7. A. Zamani, M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Myocardial Ischemia Detection by a Sensitive Pump-Probe Atomic Magnetometer," J. Lasers Med. Sci., Vol. 13, pp. 1-7, 2022. [DOI:10.34172/jlms.2022.24] [PMID] []
8. R. Wyllie, M. Kauer, G.S. Smetana, R.T. Wakai, and T.G. Walker, "Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array," Phys. Med. Biol., Vol. 57, pp. 2619-2632, 2012.‏ [DOI:10.1088/0031-9155/57/9/2619] [PMID] []
9. E. Labyt, M.C. Corsi, W. Fourcault, A.P. Laloy, F. Bertrand, F. Lenouvel, G. Cauffet, M. Le Prado, F. Berger, and S. Morales, "Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature," IEEE Trans. Med., Vol. 38, pp. 90-98, 2018. [DOI:10.1109/TMI.2018.2856367] [PMID]
10. H. Cook, Y. Bezsudnova, LM. Koponen, O. Jensen, G. Barontini, and A. Kowalczyk, "An optically pumped magnetic gradiometer for the detection of human biomagnetism," Quantum Sci. Technol., Vol. 2402, pp. 10113(1-7), 2024. [DOI:10.1088/2058-9565/ad3d81] [PMID] []
11. I.K. Kominis, T.W. Kornack, J.C. Allred, and M.V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature, Vol. 422, pp. 596-599, 2003. [DOI:10.1038/nature01484] [PMID]
12. H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M.V. Romalis, "Magnetoencephalography with an atomic magnetometer," Appl. Phys. Lett., Vol. 89, pp. 211104(1-3), 2006. [DOI:10.1063/1.2392722]
13. J. Sheng, S. Wan, Y. Sun, R. Dou, Y. Guo, K. Wei, K. He, J. Qin, and J.H. Gao, "Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer," Rev. Sci. Instrum., Vol. 88, pp. 094304(1-5), 2017. [DOI:10.1063/1.5001730] [PMID]
14. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Muñoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, and G.R. Barnes, "Moving magnetoencephalography towards real-world applications with a wearable system," Nature, Vol. 555, pp. 657-661, 2018. [DOI:10.1038/nature26147] [PMID] []
15. R.M. Hill, E. Boto, N. Holmes, C. Hartley, Z.A. Seedat, J. Leggett, G. Roberts, V. Shah, T.M. Tierney, M.W. Woolrich, and C.J. Stagg. "A tool for functional brain imaging with lifespan compliance," Nat. Commun., Vol. 10, pp. 4785(1-11), 2019. [DOI:10.1038/s41467-019-12486-x] [PMID] []
16. R. Li, W. Quan, W. Fan, L. Xing, Z. Wang, Y. Zhai, and J. Fang, "A dual-axis, high-sensitivity atomic magnetometer," Chin. Phys. B, Vol. 26, pp. 120702(1-5), 2017. [DOI:10.1088/1674-1056/26/12/120702]
17. Z. Yuan, Y. Liu, M. Xiang, Y. Gao, Y. Suo, M. Ye, and Y. Zhai. "Compact multi-channel optically pumped magnetometer for bio-magnetic field imaging," Opt. Laser Technol., Vol. 164, pp. 109534(1-4), 2023.‏ [DOI:10.1016/j.optlastec.2023.109534]
18. K. Jensen, M.A. Skarsfeldt, H. Stærkind, J. Arnbak, M.V. Balabas, S.P. Olesen, and E.S. Polzik, "Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer," Sci. Rep., Vol. 8, pp. 16218(1-9), 2018.‏ [DOI:10.1038/s41598-018-34535-z] [PMID] []
19. A. Kandori, W. Shimizu, M. Yokokawa, T. Noda, S. Kamakura, and K. Miyatake, "Identifying patterns of spatial current dispersion that characterise and separate the Brugada syndrome and complete right-bundle branch block," Med. Biol. Eng. Comput., Vol. 42, pp. 236-244, 2004. [DOI:10.1007/BF02344637] [PMID]
20. H. Ha¨nninen, P. Takala, M. Ma¨kija¨rvi, J. Montonen, P. Korhonen, and L. Oikarinen. "Recording locations in multichannel magnetocardiography and body surface potential mapping sensitive for regional exercise-induced myocardial ischemia," Basic Res. Cardiol., Vol. 96, pp. 405-414, 2001. [DOI:10.1007/s003950170049] [PMID]
21. F.E. Smith, P. Langley, P. Van Leeuwen, B. Hailer, L. Trahms, U. Steinhoff, and A. Murray, "Comparison of magnetocardiography and electrocardiography: a study of automatic measurement of dispersion of ventricular repolarization," Europace, Vol. 8, pp. 887 893, 2006.‏ [DOI:10.1093/europace/eul070] [PMID]
22. A. Kandori, T. Hosono, Y. Chiba, M. Shinto, S. Miyashita, and M. Murakami, "Classifying cases of fetal Wolff- Parkinson -White syndrome by estimating the accessory pathway from fetal magnetocardiograms," Med. Biol. Eng. Comput., Vol. 41, pp. 33-39, 2003. [DOI:10.1007/BF02343536] [PMID]
23. J.U. Sutter, O. Lewis, C. Robinson, A. McMahon, R. Boyce, R. Bragg, and E. Riis. "Recording the heartbeat of cattle using a gradiometer system of optically pumped magnetometers," Comput. Electron. Agric, Vol. 177, pp. 105651(1-8), 2020.‏ [DOI:10.1016/j.compag.2020.105651]
24. H. Koch and W. Haberkorn, "Magnetic field mapping of cardiac electrophysio- logical function,' Philos. Trans. R. Soc. Lond., Vol. 359, pp. 1287-1298, 2001. [DOI:10.1098/rsta.2001.0831]
25. X. Han, X. Xue, Y. Yang, X. Liang, Y. Gao, M. Xiang, and X. Ning, "Magnetocardiography using optically pumped magnetometers array to detect acute myocardial infarction and premature ventricular contractions in dogs," Phys. Med. Biol., Vol. 68, pp. 165006(1-6), 2023.‏ [DOI:10.1088/1361-6560/ace497] [PMID]
26. L.A. Bradshaw, R.S. Wijesinghe, and J.P. Wikswo, "Spatial filter approach for comparison of the forward and inverse problems of electroencephalography and magnetoencephalography," Ann. Biomed. Eng., Vol. 29, pp. 214-226, 2001. [DOI:10.1114/1.1352641] [PMID]
27. L.A. Bradshaw, W.O. Richards, and J.P. Wikswo, "Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity," Med. Biol. Eng. Comput., Vol. 39, pp. 35-43, 2001. [DOI:10.1007/BF02345264] [PMID]
28. S. Dutz, M.E. Bellemann, U. Leder, and J. Haueisen, "Investigation of passive myocardial vortex currents in an anthropomorphic phantom," Biomed. Tech., Vol. 48, pp. 230-231, 2003. [DOI:10.1515/bmte.2003.48.s1.230]
29. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, "A room temperature 19-channel magnetic field mapping device for cardiac signals," Appl. Phys. Lett., Vol. 95, pp. 173701(1-3), 2009. [DOI:10.1063/1.3255041]
30. R. Wyllie, M. Kauer, R.T. Wakai, and T.G. Walker, "Optical magnetometer array for fetal magnetocardiography," Opt. Lett., Vol. 37, pp. 2247-2249, 2012. [DOI:10.1364/OL.37.002247] [PMID] []
31. M. Mosleh, M. Ranjbaran, S.M. Hamidi, and M.M. Tehranchi, "Ellipsometric spectroscopy of rubidium vapor cell at near-normal incidence," Sci. Rep., Vol. 10, pp. 17080(1 9), 2020.‏ [DOI:10.1038/s41598-020-74255-x] [PMID] []
32. M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers," J. Magn. Magn. Mater., Vol. 424, pp. 284-290, 2017.‏ [DOI:10.1016/j.jmmm.2016.10.058]
33. I.A. Sulai, Z.J. DeLand, M.D. Bulatowicz, C.P. Wahl, R.T. Wakai, and T.G. Walker, "Characterizing atomic magnetic gradiometers for fetal magnetocardiography," Rev. Sci. Instrum., Vol. 90, pp. 085003(1-10), 2019. [DOI:10.1063/1.5091007] [PMID] []
34. M.M. Tehranchi, R. Sedyan, M. Ranjbaran, S. M.H. Khalkhali, and S.M. Hamidi, "Atomic Gradiometer for Recording the Simulated Human Brain Signal in Unshielded Environment," Int. J. Appl. Pharma., Vol. 14, pp. 40-51, 2024.
35. M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Relaxation time dependencies of optically detected magnetic resonance harmonics in highly sensitive Mx magnetometers," J. Magn. Magn. Mater., Vol. 469, pp. 522-530, 2019. [DOI:10.1016/j.jmmm.2018.09.031]
36. G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express, Vol. 11, pp. 904-909, 2003. [DOI:10.1364/OE.11.000904] [PMID]
37. A. Bhaskar, A. Vinod, "Demonstration of the Origin of ECG," Adv. Physiol. Educ., Vol. 30, pp. 128-128, 2006. [DOI:10.1152/advan.00008.2006] [PMID]
38. C.J. Ho and R.T. Ho, "The frog sign revisited," J. Innov. Card. Rhythm. Manag. Vol. 13, pp. 5184-5187, 2022. [DOI:10.19102/icrm.2022.13101] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb