1. H. Koch, "SQUID magnetocardiography: Status and perspectives," J. IEEE Trans. Appl. Supercond., Vol. 11, pp. 49-59, 2001. [
DOI:10.1109/77.919284]
2. P.M. Vetoshko, N.A. Gusev, D.A. Chepurnova, E.V. Samoilova, I.I. Syvorotka, I.M. Syvorotka, and V.I. Belotelov. "Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations," Tech. Phys. Lett., Vol. 42, pp. 860-864, 2016. [
DOI:10.1134/S1063785016080289]
3. S. Morales, M.C. Corsi, W. Fourcault, F. Bertrand, G. Cauffet, C. Gobbo, F. Alcouffe, F. Lenouvel, M. Le Prado, F. Berger, and G. Vanzetto, "Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature," Phys. Med. Biol., Vol. 62, pp. 7267-1-12, 2017. [
DOI:10.1088/1361-6560/aa6459] [
PMID]
4. J.S. Kwong, B. Leithäuser, J.W. Park, and C.M. Yu. "Diagnostic value of magnetocardiography in coronary artery disease and cardiac arrhythmias: A review of clinical data," Int. J. Cardiol., Vol. 167, pp. 1835-1842, 2013. [
DOI:10.1016/j.ijcard.2012.12.056] [
PMID]
5. T. Inaba, Y. Nakazawa, K. Yoshida, Y. Kato, A. Hattori, T. Kimura, and K. Aonuma. "Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital," Supercond. Sci. Technol., Vol. 30, pp. 114003(1-6), 2017. [
DOI:10.1088/1361-6668/aa8c26]
6. K. Fujiwara, M. Oogane, A. Kanno, M. Imada, J. Jono, T. Terauchi, and Y. Ando. "Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors," Appl. Phys. Express, Vol. 11, pp. 023001(1-4), 2018. [
DOI:10.7567/APEX.11.023001]
7. A. Zamani, M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Myocardial Ischemia Detection by a Sensitive Pump-Probe Atomic Magnetometer," J. Lasers Med. Sci., Vol. 13, pp. 1-7, 2022. [
DOI:10.34172/jlms.2022.24] [
PMID] [
]
8. R. Wyllie, M. Kauer, G.S. Smetana, R.T. Wakai, and T.G. Walker, "Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array," Phys. Med. Biol., Vol. 57, pp. 2619-2632, 2012. [
DOI:10.1088/0031-9155/57/9/2619] [
PMID] [
]
9. E. Labyt, M.C. Corsi, W. Fourcault, A.P. Laloy, F. Bertrand, F. Lenouvel, G. Cauffet, M. Le Prado, F. Berger, and S. Morales, "Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature," IEEE Trans. Med., Vol. 38, pp. 90-98, 2018. [
DOI:10.1109/TMI.2018.2856367] [
PMID]
10. H. Cook, Y. Bezsudnova, LM. Koponen, O. Jensen, G. Barontini, and A. Kowalczyk, "An optically pumped magnetic gradiometer for the detection of human biomagnetism," Quantum Sci. Technol., Vol. 2402, pp. 10113(1-7), 2024. [
DOI:10.1088/2058-9565/ad3d81] [
PMID] [
]
11. I.K. Kominis, T.W. Kornack, J.C. Allred, and M.V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature, Vol. 422, pp. 596-599, 2003. [
DOI:10.1038/nature01484] [
PMID]
12. H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M.V. Romalis, "Magnetoencephalography with an atomic magnetometer," Appl. Phys. Lett., Vol. 89, pp. 211104(1-3), 2006. [
DOI:10.1063/1.2392722]
13. J. Sheng, S. Wan, Y. Sun, R. Dou, Y. Guo, K. Wei, K. He, J. Qin, and J.H. Gao, "Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer," Rev. Sci. Instrum., Vol. 88, pp. 094304(1-5), 2017. [
DOI:10.1063/1.5001730] [
PMID]
14. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Muñoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, and G.R. Barnes, "Moving magnetoencephalography towards real-world applications with a wearable system," Nature, Vol. 555, pp. 657-661, 2018. [
DOI:10.1038/nature26147] [
PMID] [
]
15. R.M. Hill, E. Boto, N. Holmes, C. Hartley, Z.A. Seedat, J. Leggett, G. Roberts, V. Shah, T.M. Tierney, M.W. Woolrich, and C.J. Stagg. "A tool for functional brain imaging with lifespan compliance," Nat. Commun., Vol. 10, pp. 4785(1-11), 2019. [
DOI:10.1038/s41467-019-12486-x] [
PMID] [
]
16. R. Li, W. Quan, W. Fan, L. Xing, Z. Wang, Y. Zhai, and J. Fang, "A dual-axis, high-sensitivity atomic magnetometer," Chin. Phys. B, Vol. 26, pp. 120702(1-5), 2017. [
DOI:10.1088/1674-1056/26/12/120702]
17. Z. Yuan, Y. Liu, M. Xiang, Y. Gao, Y. Suo, M. Ye, and Y. Zhai. "Compact multi-channel optically pumped magnetometer for bio-magnetic field imaging," Opt. Laser Technol., Vol. 164, pp. 109534(1-4), 2023. [
DOI:10.1016/j.optlastec.2023.109534]
18. K. Jensen, M.A. Skarsfeldt, H. Stærkind, J. Arnbak, M.V. Balabas, S.P. Olesen, and E.S. Polzik, "Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer," Sci. Rep., Vol. 8, pp. 16218(1-9), 2018. [
DOI:10.1038/s41598-018-34535-z] [
PMID] [
]
19. A. Kandori, W. Shimizu, M. Yokokawa, T. Noda, S. Kamakura, and K. Miyatake, "Identifying patterns of spatial current dispersion that characterise and separate the Brugada syndrome and complete right-bundle branch block," Med. Biol. Eng. Comput., Vol. 42, pp. 236-244, 2004. [
DOI:10.1007/BF02344637] [
PMID]
20. H. Ha¨nninen, P. Takala, M. Ma¨kija¨rvi, J. Montonen, P. Korhonen, and L. Oikarinen. "Recording locations in multichannel magnetocardiography and body surface potential mapping sensitive for regional exercise-induced myocardial ischemia," Basic Res. Cardiol., Vol. 96, pp. 405-414, 2001. [
DOI:10.1007/s003950170049] [
PMID]
21. F.E. Smith, P. Langley, P. Van Leeuwen, B. Hailer, L. Trahms, U. Steinhoff, and A. Murray, "Comparison of magnetocardiography and electrocardiography: a study of automatic measurement of dispersion of ventricular repolarization," Europace, Vol. 8, pp. 887 893, 2006. [
DOI:10.1093/europace/eul070] [
PMID]
22. A. Kandori, T. Hosono, Y. Chiba, M. Shinto, S. Miyashita, and M. Murakami, "Classifying cases of fetal Wolff- Parkinson -White syndrome by estimating the accessory pathway from fetal magnetocardiograms," Med. Biol. Eng. Comput., Vol. 41, pp. 33-39, 2003. [
DOI:10.1007/BF02343536] [
PMID]
23. J.U. Sutter, O. Lewis, C. Robinson, A. McMahon, R. Boyce, R. Bragg, and E. Riis. "Recording the heartbeat of cattle using a gradiometer system of optically pumped magnetometers," Comput. Electron. Agric, Vol. 177, pp. 105651(1-8), 2020. [
DOI:10.1016/j.compag.2020.105651]
24. H. Koch and W. Haberkorn, "Magnetic field mapping of cardiac electrophysio- logical function,' Philos. Trans. R. Soc. Lond., Vol. 359, pp. 1287-1298, 2001. [
DOI:10.1098/rsta.2001.0831]
25. X. Han, X. Xue, Y. Yang, X. Liang, Y. Gao, M. Xiang, and X. Ning, "Magnetocardiography using optically pumped magnetometers array to detect acute myocardial infarction and premature ventricular contractions in dogs," Phys. Med. Biol., Vol. 68, pp. 165006(1-6), 2023. [
DOI:10.1088/1361-6560/ace497] [
PMID]
26. L.A. Bradshaw, R.S. Wijesinghe, and J.P. Wikswo, "Spatial filter approach for comparison of the forward and inverse problems of electroencephalography and magnetoencephalography," Ann. Biomed. Eng., Vol. 29, pp. 214-226, 2001. [
DOI:10.1114/1.1352641] [
PMID]
27. L.A. Bradshaw, W.O. Richards, and J.P. Wikswo, "Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity," Med. Biol. Eng. Comput., Vol. 39, pp. 35-43, 2001. [
DOI:10.1007/BF02345264] [
PMID]
28. S. Dutz, M.E. Bellemann, U. Leder, and J. Haueisen, "Investigation of passive myocardial vortex currents in an anthropomorphic phantom," Biomed. Tech., Vol. 48, pp. 230-231, 2003. [
DOI:10.1515/bmte.2003.48.s1.230]
29. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, "A room temperature 19-channel magnetic field mapping device for cardiac signals," Appl. Phys. Lett., Vol. 95, pp. 173701(1-3), 2009. [
DOI:10.1063/1.3255041]
30. R. Wyllie, M. Kauer, R.T. Wakai, and T.G. Walker, "Optical magnetometer array for fetal magnetocardiography," Opt. Lett., Vol. 37, pp. 2247-2249, 2012. [
DOI:10.1364/OL.37.002247] [
PMID] [
]
31. M. Mosleh, M. Ranjbaran, S.M. Hamidi, and M.M. Tehranchi, "Ellipsometric spectroscopy of rubidium vapor cell at near-normal incidence," Sci. Rep., Vol. 10, pp. 17080(1 9), 2020. [
DOI:10.1038/s41598-020-74255-x] [
PMID] [
]
32. M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers," J. Magn. Magn. Mater., Vol. 424, pp. 284-290, 2017. [
DOI:10.1016/j.jmmm.2016.10.058]
33. I.A. Sulai, Z.J. DeLand, M.D. Bulatowicz, C.P. Wahl, R.T. Wakai, and T.G. Walker, "Characterizing atomic magnetic gradiometers for fetal magnetocardiography," Rev. Sci. Instrum., Vol. 90, pp. 085003(1-10), 2019. [
DOI:10.1063/1.5091007] [
PMID] [
]
34. M.M. Tehranchi, R. Sedyan, M. Ranjbaran, S. M.H. Khalkhali, and S.M. Hamidi, "Atomic Gradiometer for Recording the Simulated Human Brain Signal in Unshielded Environment," Int. J. Appl. Pharma., Vol. 14, pp. 40-51, 2024.
35. M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, and S.M.H. Khalkhali, "Relaxation time dependencies of optically detected magnetic resonance harmonics in highly sensitive Mx magnetometers," J. Magn. Magn. Mater., Vol. 469, pp. 522-530, 2019. [
DOI:10.1016/j.jmmm.2018.09.031]
36. G. Bison, R. Wynands, and A. Weis, "Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor," Opt. Express, Vol. 11, pp. 904-909, 2003. [
DOI:10.1364/OE.11.000904] [
PMID]
37. A. Bhaskar, A. Vinod, "Demonstration of the Origin of ECG," Adv. Physiol. Educ., Vol. 30, pp. 128-128, 2006. [
DOI:10.1152/advan.00008.2006] [
PMID]
38. C.J. Ho and R.T. Ho, "The frog sign revisited," J. Innov. Card. Rhythm. Manag. Vol. 13, pp. 5184-5187, 2022. [
DOI:10.19102/icrm.2022.13101] [
PMID] [
]