1. N. Young, R. Zivadinov, M.G., Dwyer, N. Bergsland, B., Weinstock-Guttman, and D. Jakimovski, "Retinal Blood Vessel Analysis Using Optical Coherence Tomography (OCT) in Multiple Sclerosis," Diagn., Vol. 13, no. 4, pp. 596, 2023. [
DOI:10.3390/diagnostics13040596] [
PMID] [
]
2. D. Costin, G.M. Pînzaru, A.M. Pătraşcu, A. Moţoc, and A.D. Moraru, "Multiple sclerosis with ophthalmologic onset - case report," Rom J. Ophthalmol., Vol. 62, no. 1, pp. 78-82, 2018. [
DOI:10.22336/rjo.2018.11] [
PMID] [
]
3. J. Chua, M. Bostan, C. Li, Y. C. Sim, I. Bujor, D. Wong, B. Tan, X. Yao, and F. Schwarzhans, "A multi-regression approach to improve optical coherence tomography diagnostic accuracy in multiple sclerosis patients without previous optic neuritis," NeuroImage, Clin., Vol. 34, pp. 103010(1 8), 2022. [
DOI:10.1016/j.nicl.2022.103010] [
PMID] [
]
4. B. Mihaylova and S. Cherninkova, "Optical Coherence Tomography (OCT) and Angio-OCT Imaging Techniques in Multiple Sclerosis Patients with or without Optic Neuritis," in Multiple Sclerosis-Genetics, Disease Mechanisms and Clinical Developments, IntechOpen, pp. 105772-106585, 2022.
5. Z. Khodabandeh, H. Rabbani, F. Ashtari, H.G. Zimmermann, S. Motamedi, A.U. Brandt, F. Paul, and R. Kafieh, "Interpretable classification using occlusion sensitivity on multilayer segmented OCT from patients with Multiple Sclerosis and healthy controls," pp. 1-16,
https://doi.org/10.21203/rs.3.rs-1547669/v1 [
DOI:10.21203/rs.3.rs-1547669/v1, 2022.]
6. M. Eslami, S. Lichtman-Mikol, S. Razmjou, and E. Bernitsas, "Optical Coherence Tomography in Chronic Relapsing Inflammatory Optic Neuropathy, Neuromyelitis Optica and Multiple Sclerosis: A Comparative Study," Brain Sci., Vol. 12, no. 9, pp. 1140(1-11), 2022. [
DOI:10.3390/brainsci12091140] [
PMID] [
]
7. T. Pearson, Y. Chen, B. Dhillon, S. Chandran, J. van Hemert, and T. MacGillivray, "Multi-modal retinal scanning to measure retinal thickness and peripheral blood vessels in multiple sclerosis," Sci. Rep., Vol. 12, no. 1, pp. 20472-20486, 2022. [
DOI:10.1038/s41598-022-24312-4] [
PMID] [
]
8. E. El-Mayah, M.M.A. Mohamed, H. Elmekawey, and R.M. Eltanamly, "Correlation between retinal and optic nerve microvasculature and sensitivity in patients with multiple sclerosis with and without optic neuritis," J. Egypt. Ophthalmol. Soc., Vol. 115, no. 4, pp. 222-231, 2022. [
DOI:10.4103/ejos.ejos_84_22]
9. H. Jiang, G.R. Gameiro, Y. Liu, Y. Lin, J. Hernandez, Y. Deng, G. Gregori, S. Delgado, and J. Wang, "Visual function and disability are associated with increased retinal volumetric vessel density in patients with multiple sclerosis," Am. J. Ophthalmol., Vol. 213, pp. 34-45, 2020. [
DOI:10.1016/j.ajo.2019.12.021] [
PMID] [
]
10. J. Fischer, T. Otto, F. Delori, L. Pace, and G. Staurenghi, Scanning laser ophthalmoscopy (SLO): High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics, pp. 35-57, 2019. [
DOI:10.1007/978-3-030-16638-0_2] [
]
11. A. Karkehabadi, P. Oftadeh, D. Shafaie, and J. Hassanpour, "On the Connection between Saliency Guided Training and Robustness in Image Classification," Proc. 12th Int. Conf. on Intelligent Control and Information Processing (ICICIP), Nanjing, China, pp. 203-210, 2024. [
DOI:10.1109/ICICIP60808.2024.10477811]
12. H. Xie, "AMD-GAN: Attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images," Neural Netw., Vol. 132, pp. 477-490, 2020. [
DOI:10.1016/j.neunet.2020.09.005] [
PMID]
13. M.A. Mainster, "Scanning laser ophthalmoscopy retro illumination: Applications and illusions," Int. J. Retina Vitreous, Vol. 8, no. 1, pp. 1-9, 2022. [
DOI:10.1186/s40942-022-00421-0] [
PMID] [
]
14. M.M. Fraz, "Blood vessel segmentation methodologies in retinal images-a survey," Comput. Methods Programs Biomed., Vol. 108, no. 1, pp. 407-433, 2012. [
DOI:10.1016/j.cmpb.2012.03.009] [
PMID]
15. A. Karkehabadi and A. Sasan, "SMOOT: Saliency guided mask optimized online training," ArXiv preprint arXiv:2310.00772, 2023.
16. A. Desiani, "VG-Drop Net: A robust architecture for blood vessels segmentation on retinal image," IEEE Access, Vol. 10, pp. 92067-92083, 2022. [
DOI:10.1109/ACCESS.2022.3202890]
17. H. Wilhelm and M. Schabet, "The diagnosis and treatment of optic neuritis," Dtsch. Arztebl. Int., Vol. 112, no. 37, pp. 616-627, 2015. [
DOI:10.3238/arztebl.2015.0616] [
PMID] [
]
18. B. Bhaduri, "Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography," Biomed. Opt. Express, Vol. 7, no. 6, pp. 2321-2330, 2016. [
DOI:10.1364/BOE.7.002321] [
PMID] [
]
19. R.I. Spain, L. Liu, X. Zhang, Y. Jia, O. Tan, D. Bourdette, and D. Huang, "Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis," Br. J. Ophthalmol., Vol. 102, no. 4, pp. 520-524, 2018. [
DOI:10.1136/bjophthalmol-2017-310477] [
PMID] [
]
20. C. Cavaliere, "Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features," Sensors, Vol. 19, no. 23, pp. 5323-5332, 2019. [
DOI:10.3390/s19235323] [
PMID] [
]
21. A. Montolío, J.O.S.E. CEGONino, E. GarciaMartin, and A. Pérez del Palomar, "Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis," Ann. Biomed. Eng., Vol. 50, no. 5, pp. 507-528, 2022. [
DOI:10.1007/s10439-022-02930-3] [
PMID] [
]
22. R.C. Kenney, M. Liu, L. Hasanaj, B. Joseph, A. Abu Al-Hassan, L.J. Balk, R. Behbehani, A. Brandt, P.A. Calabresi, E.Frohman, T.C. Frohman, J.Havla, B. Hemmer, H. Jiang, B. Knier, T. Korn, L. Leocani, E.H. Martinez-Lapiscina, A. Papadopoulou, F. Paul, A. Petzold, M. Pisa, P. Villoslada, H. Zimmermann, L.E. Thorpe, H. Ishikawa, J.S. Schuman, G. Wollstein, Y. Chen, S. Saidha, S. Galetta, and L.J. Balcer, "The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis," Neurol., Vol. 99, no. 11, pp. 1100-1112, 2022. [
DOI:10.1212/WNL.0000000000200883] [
]
23. A. López-Dorado, J. Pérez, M.J. Rodrigo, J.M. MiguelJiménez, M. Ortiz, L. de Santiago, E. LópezGuillén, R. Blanco, C. Cavalliere, E.M.S. Morla, L. Boquete, "Diagnosis of multiple sclerosis using multifocal ERG data feature fusion," Inf. Fusion, Vol. 76, pp. 157-167, 2021. [
DOI:10.1016/j.inffus.2021.05.006] [
PMID] [
]
24. M. Bakhshi, A. Karkehabadi, and S.B. Razavian, "Revolutionizing Medical Diagnosis with Novel Teaching-Learning-Based Optimization," in Proc. Int. Conf. on Emerging Smart Computing and Informatics (ESCI), IEEE, pp. 1-6, March 2024. [
DOI:10.1109/ESCI59607.2024.10497216]
25. N. Yaghoubi, H. Masumi, M.H. Fatehi, F. Ashtari, R. Kafieh, "Deep learning and classic machine learning models in the automatic diagnosis of multiple sclerosis using retinal vessels," Multimed. Tools Appl., Advance online publication, DOI: 10.1007/s11042-023-16812-w, Vol. 83, pp. 37483-37504, 2023. [
DOI:10.1007/s11042-023-16812-w]
26. A. Abraham, L. Nicholson, A. Dick, C. Rice, D. Atan, "Intermediate uveitis associated with MS: Diagnosis, clinical features, pathogenic mechanisms, and recommendations for management," Neurol. Neuroimmunol. Neuroinflamm., Vol. 8, no. 1, pp. 909-915, 2021. [
DOI:10.1212/NXI.0000000000000909] [
PMID] [
]