Volume 17, Issue 1 (Winter-Spring 2023)                   IJOP 2023, 17(1): 103-116 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

yaghoubi N, Masumi H, Fatehi M H, Ashtari F, Kafieh R. Utilizing Long Short-Term Memory for Detecting Multiple Sclerosis Based on Vessel Analysis. IJOP 2023; 17 (1) :103-116
URL: http://ijop.ir/article-1-550-en.html
1- aDepartment of Biomedical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran
2- Department of Electrical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran
3- Isfahan neurosciences research center, Isfahan University of Medical Sciences, Isfahan, Iran
4- School of Advanced Technologies in Medicine, Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, and Iran
5- Department of Engineering, Durham University, South Road, Durham, UK
Abstract:   (704 Views)

Background: Multiple Sclerosis (MS) is a chronic immune-mediated disease affecting the central nervous system, leading to various disturbances, including visual impairment. Early and accurate diagnosis of MS is critical for effective treatment and management. Scanning Laser Ophthalmoscopy (SLO) is a non-invasive technique that provides high-quality retinal images, serving as a promising resource for the early detection of MS. This research investigates a vessel-based approach for MS detection in SLO images using Long Short-Term Memory (LSTM) networks.
Material and Methods: A total of 106 Healthy Controls (HCs) and 39 MS patients (78 eyes) were enrolled. After implementing quality control measures and removing poor-quality or damaged images, the research utilized a total of 265 photos (73 MS and 192 HC). An approach for the early detection of MS in SLO images using LSTM network is introduced. This approach involves two steps: 1.It involves pre-processing and extracting vessels and then pre-training a deep neural network using the source dataset, and 2. tuning the network on the target dataset of SLO images.
The significance of vessel segmentation in MS detection is examined, and the application of the proposed method in improving diagnostic models is explored. The proposed approach achieves an accuracy rate of 97.44% when evaluated on a test dataset consisting of SLO pictures.
Through experiments on SLO datasets and employing the proposed vessel-based approach with LSTM, empirical results demonstrate that this approach contributes to the early detection of MS with high accuracy. These models exhibit the capability to accurately detect the disease with high precision and appropriate sensitivity.
 

Full-Text [PDF 793 kb]   (325 Downloads)    
Type of Study: Research | Subject: Fourier Optics, Holography, Imaging systems
Received: 2024/02/2 | Revised: 2024/08/17 | Accepted: 2024/05/6 | Published: 2023/01/20

References
1. N. Young, R. Zivadinov, M.G., Dwyer, N. Bergsland, B., Weinstock-Guttman, and D. Jakimovski, "Retinal Blood Vessel Analysis Using Optical Coherence Tomography (OCT) in Multiple Sclerosis," Diagn., Vol. 13, no. 4, pp. 596, 2023. [DOI:10.3390/diagnostics13040596] [PMID] []
2. D. Costin, G.M. Pînzaru, A.M. Pătraşcu, A. Moţoc, and A.D. Moraru, "Multiple sclerosis with ophthalmologic onset - case report," Rom J. Ophthalmol., Vol. 62, no. 1, pp. 78-82, 2018. [DOI:10.22336/rjo.2018.11] [PMID] []
3. J. Chua, M. Bostan, C. Li, Y. C. Sim, I. Bujor, D. Wong, B. Tan, X. Yao, and F. Schwarzhans, "A multi-regression approach to improve optical coherence tomography diagnostic accuracy in multiple sclerosis patients without previous optic neuritis," NeuroImage, Clin., Vol. 34, pp. 103010(1 8), 2022. [DOI:10.1016/j.nicl.2022.103010] [PMID] []
4. B. Mihaylova and S. Cherninkova, "Optical Coherence Tomography (OCT) and Angio-OCT Imaging Techniques in Multiple Sclerosis Patients with or without Optic Neuritis," in Multiple Sclerosis-Genetics, Disease Mechanisms and Clinical Developments, IntechOpen, pp. 105772-106585, 2022.
5. Z. Khodabandeh, H. Rabbani, F. Ashtari, H.G. Zimmermann, S. Motamedi, A.U. Brandt, F. Paul, and R. Kafieh, "Interpretable classification using occlusion sensitivity on multilayer segmented OCT from patients with Multiple Sclerosis and healthy controls," pp. 1-16, https://doi.org/10.21203/rs.3.rs-1547669/v1 [DOI:10.21203/rs.3.rs-1547669/v1, 2022.]
6. M. Eslami, S. Lichtman-Mikol, S. Razmjou, and E. Bernitsas, "Optical Coherence Tomography in Chronic Relapsing Inflammatory Optic Neuropathy, Neuromyelitis Optica and Multiple Sclerosis: A Comparative Study," Brain Sci., Vol. 12, no. 9, pp. 1140(1-11), 2022. [DOI:10.3390/brainsci12091140] [PMID] []
7. T. Pearson, Y. Chen, B. Dhillon, S. Chandran, J. van Hemert, and T. MacGillivray, "Multi-modal retinal scanning to measure retinal thickness and peripheral blood vessels in multiple sclerosis," Sci. Rep., Vol. 12, no. 1, pp. 20472-20486, 2022. [DOI:10.1038/s41598-022-24312-4] [PMID] []
8. E. El-Mayah, M.M.A. Mohamed, H. Elmekawey, and R.M. Eltanamly, "Correlation between retinal and optic nerve microvasculature and sensitivity in patients with multiple sclerosis with and without optic neuritis," J. Egypt. Ophthalmol. Soc., Vol. 115, no. 4, pp. 222-231, 2022. [DOI:10.4103/ejos.ejos_84_22]
9. H. Jiang, G.R. Gameiro, Y. Liu, Y. Lin, J. Hernandez, Y. Deng, G. Gregori, S. Delgado, and J. Wang, "Visual function and disability are associated with increased retinal volumetric vessel density in patients with multiple sclerosis," Am. J. Ophthalmol., Vol. 213, pp. 34-45, 2020. [DOI:10.1016/j.ajo.2019.12.021] [PMID] []
10. J. Fischer, T. Otto, F. Delori, L. Pace, and G. Staurenghi, Scanning laser ophthalmoscopy (SLO): High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics, pp. 35-57, 2019. [DOI:10.1007/978-3-030-16638-0_2] []
11. A. Karkehabadi, P. Oftadeh, D. Shafaie, and J. Hassanpour, "On the Connection between Saliency Guided Training and Robustness in Image Classification," Proc. 12th Int. Conf. on Intelligent Control and Information Processing (ICICIP), Nanjing, China, pp. 203-210, 2024. [DOI:10.1109/ICICIP60808.2024.10477811]
12. H. Xie, "AMD-GAN: Attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images," Neural Netw., Vol. 132, pp. 477-490, 2020. [DOI:10.1016/j.neunet.2020.09.005] [PMID]
13. M.A. Mainster, "Scanning laser ophthalmoscopy retro illumination: Applications and illusions," Int. J. Retina Vitreous, Vol. 8, no. 1, pp. 1-9, 2022. [DOI:10.1186/s40942-022-00421-0] [PMID] []
14. M.M. Fraz, "Blood vessel segmentation methodologies in retinal images-a survey," Comput. Methods Programs Biomed., Vol. 108, no. 1, pp. 407-433, 2012. [DOI:10.1016/j.cmpb.2012.03.009] [PMID]
15. A. Karkehabadi and A. Sasan, "SMOOT: Saliency guided mask optimized online training," ArXiv preprint arXiv:2310.00772, 2023.
16. A. Desiani, "VG-Drop Net: A robust architecture for blood vessels segmentation on retinal image," IEEE Access, Vol. 10, pp. 92067-92083, 2022. [DOI:10.1109/ACCESS.2022.3202890]
17. H. Wilhelm and M. Schabet, "The diagnosis and treatment of optic neuritis," Dtsch. Arztebl. Int., Vol. 112, no. 37, pp. 616-627, 2015. [DOI:10.3238/arztebl.2015.0616] [PMID] []
18. B. Bhaduri, "Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography," Biomed. Opt. Express, Vol. 7, no. 6, pp. 2321-2330, 2016. [DOI:10.1364/BOE.7.002321] [PMID] []
19. R.I. Spain, L. Liu, X. Zhang, Y. Jia, O. Tan, D. Bourdette, and D. Huang, "Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis," Br. J. Ophthalmol., Vol. 102, no. 4, pp. 520-524, 2018. [DOI:10.1136/bjophthalmol-2017-310477] [PMID] []
20. C. Cavaliere, "Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features," Sensors, Vol. 19, no. 23, pp. 5323-5332, 2019. [DOI:10.3390/s19235323] [PMID] []
21. A. Montolío, J.O.S.E. CEGONino, E. GarciaMartin, and A. Pérez del Palomar, "Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis," Ann. Biomed. Eng., Vol. 50, no. 5, pp. 507-528, 2022. [DOI:10.1007/s10439-022-02930-3] [PMID] []
22. R.C. Kenney, M. Liu, L. Hasanaj, B. Joseph, A. Abu Al-Hassan, L.J. Balk, R. Behbehani, A. Brandt, P.A. Calabresi, E.Frohman, T.C. Frohman, J.Havla, B. Hemmer, H. Jiang, B. Knier, T. Korn, L. Leocani, E.H. Martinez-Lapiscina, A. Papadopoulou, F. Paul, A. Petzold, M. Pisa, P. Villoslada, H. Zimmermann, L.E. Thorpe, H. Ishikawa, J.S. Schuman, G. Wollstein, Y. Chen, S. Saidha, S. Galetta, and L.J. Balcer, "The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis," Neurol., Vol. 99, no. 11, pp. 1100-1112, 2022. [DOI:10.1212/WNL.0000000000200883] []
23. A. López-Dorado, J. Pérez, M.J. Rodrigo, J.M. MiguelJiménez, M. Ortiz, L. de Santiago, E. LópezGuillén, R. Blanco, C. Cavalliere, E.M.S. Morla, L. Boquete, "Diagnosis of multiple sclerosis using multifocal ERG data feature fusion," Inf. Fusion, Vol. 76, pp. 157-167, 2021. [DOI:10.1016/j.inffus.2021.05.006] [PMID] []
24. M. Bakhshi, A. Karkehabadi, and S.B. Razavian, "Revolutionizing Medical Diagnosis with Novel Teaching-Learning-Based Optimization," in Proc. Int. Conf. on Emerging Smart Computing and Informatics (ESCI), IEEE, pp. 1-6, March 2024. [DOI:10.1109/ESCI59607.2024.10497216]
25. N. Yaghoubi, H. Masumi, M.H. Fatehi, F. Ashtari, R. Kafieh, "Deep learning and classic machine learning models in the automatic diagnosis of multiple sclerosis using retinal vessels," Multimed. Tools Appl., Advance online publication, DOI: 10.1007/s11042-023-16812-w, Vol. 83, pp. 37483-37504, 2023. [DOI:10.1007/s11042-023-16812-w]
26. A. Abraham, L. Nicholson, A. Dick, C. Rice, D. Atan, "Intermediate uveitis associated with MS: Diagnosis, clinical features, pathogenic mechanisms, and recommendations for management," Neurol. Neuroimmunol. Neuroinflamm., Vol. 8, no. 1, pp. 909-915, 2021. [DOI:10.1212/NXI.0000000000000909] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb