1. M. Spellauge, F.-C. Loghin, J. Sotrop, M. Domke, M. Bobinger, A. Abdellah, M. Becherer, P. Lugli, and H.P. Huber, "Ultra-short-pulse laser ablation and modification of fully sprayed single walled carbon nanotube networks," J. Carbon, Vol. 138, pp. 234-242, 2018. [
DOI:10.1016/j.carbon.2018.05.074]
2. I. Boerasu and M. Enachescu, "Pulsed Laser Ablation Synthesis of Carbon Nano-Structures: Effect of Target Composition and Laser Ablation Condition on Their Yield and Morphology," pp. 61-82, 2014, https://api.semanticscholar.org/CorpusID:223113972.
3. F. Kazemizadeh, S. Moemen Bellah, and R. Malekfar, "Optimization of cooling devices used in laser ablation setups for carbon nanotube synthesis," J. Laser Appl., Vol. 29, pp. 042004(1-5), 2017. [
DOI:10.2351/1.4990494]
4. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, and Z. Zhang, "Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature," Appl. Phys. Lett., Vol. 72, pp. 1966-1968, 1998. [
DOI:10.1063/1.121236]
5. A.A. Puretzky, D.B. Geohegan, X. Fan, and S.J. Pennycook, "In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization," Appl. Phys. Lett., Vol. 76, pp. 182-184, 2000. [
DOI:10.1063/1.125696]
6. F. Kazeimzadeh, R. Malekfar, and M. Houshiar, "The effect of graphitic target density on carbon nanotube synthesis by pulsed laser ablation method," Amer. Inst. Phys., Vol. 110, pp. 020018(1-4), 2017. [
DOI:10.1063/1.5018950]
7. E. Solati, E. Vaghri, and D. Dorranian, "Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation," Appl. Phys. A, Vol. 124, pp. 749(1-9), 2018. [
DOI:10.1007/s00339-018-2176-2]
8. E.A. Ganash, G.A. Al-Jabarti, and R.M. Altuwirqi, "The synthesis of carbon-based nanomaterials by pulsed laser ablation in water," Mater. Research Express, Vol. 7, pp. 015002(1-10), 2020. [
DOI:10.1088/2053-1591/ab572b]
9. P. Mahdian Asl and D. Dorranian, "Effect of liquid medium temperature on the production rate and quality of graphene nanosheets produced by laser ablation," Opt Quantum Electron., Vol. 48, pp. 535(1-12), 2016. [
DOI:10.1007/s11082-016-0793-6]
10. H. Sadeghi, E. Solati, and D. Dorranian, "Producing graphene nanosheets by pulsed laser ablation: Effects of liquid environment," J. Laser Appl., Vol. 31, pp. 042003(1-11), 2019. [
DOI:10.2351/1.5109424]
11. E. Ghavidel, A.H. Sari, and D. Dorranian, "Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method," Opt. Laser Technol., Vol. 103, pp. 155-162, 2018. [
DOI:10.1016/j.optlastec.2018.01.034]
12. E. Vaghri and D. Dorranian, "Effect of ablation environment on the characteristics of graphene nanosheets produced by laser ablation," Studia UBB Chemia, LXI., Vol. 4, pp. 277-284, 2016.
13. R. Hameed, K.S. Khashan, and G.M. Sulaiman, "Preparation and characterization of graphene sheet prepared by laser ablation in liquid," Materials Today: Proc., Vol. 20, pp. 535-539, 2019. [
DOI:10.1016/j.matpr.2019.09.185]
14. A. Hahn, S. Barcikowski, and B.N. Chichkov, "Influences on Nanoparticle Production during Pulsed Laser Ablation," JLMN- J. Laser Micro/Nanoeng., Vol. 3, pp. 73-77, 2008. [
DOI:10.2961/jlmn.2008.02.0003]
15. H. Sadeghi, E. Solati, and D. Dorranian, "Producing grapheme nanosheets by pulsed laser ablation: Effects of liquid environment," J. Laser Appl., Vol. 31, pp. 042003(1-11), 2019. [
DOI:10.2351/1.5109424]
16. M. Censabellaa,b, V. Torrisic, S. Boninellib, C. Bongiornob, M.G. Grimaldia, and F. Ruffino, "Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites," Appl. Surface Science, Vol. 475, pp. 494-503, 2019. [
DOI:10.1016/j.apsusc.2019.01.029]
17. P. Nasiri, D. Doranian, and A.H. Sari, "Synthesis of Au/Si nanocomposite using laser ablation method," Opt. Laser Technol., Vol. 113, pp. 217-224, 2019. [
DOI:10.1016/j.optlastec.2018.12.033]
18. P. Ghoranneviss, D. Dorranian, and A.H. Sari, "Effects of laser fluence on the Cd(OH)2/CdO nanostructures produced by pulsed laser ablation method," Opt. Quantum Electron., vol. 51, pp. 88(1-10), 2019. [
DOI:10.1007/s11082-019-1809-9]
19. E.N. Ghaem, D. Dorranian, and A.H. Sari, "Characterization of cobalt oxide nanoparticles produced by laser ablation method: effects of laser fluence," Physica E: Low-dimensional Systems Nanostructures., Vol. 115, pp. 113670(1-19), 2020. [
DOI:10.1016/j.physe.2019.113670]
20. N. Tabatabaie and D. Dorranian, "Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen," Appl. Phys. A, Vol. 122, pp. 558(1-9), 2016. [
DOI:10.1007/s00339-016-0091-y]
21. E. Vaghria, Z. Khalajb, and D. Dorranian, "Investigating the Effects of different liquid environments on the characteristics of multilayer graphene and graphene oxide nanosheets synthesized by green laser ablation method," Diamond Related Mater., Vol 103, pp. 107696(1-9), 2020. [
DOI:10.1016/j.diamond.2020.107697]
22. P. OhadiFar, S. Shahidi, and D. Dorranian, "Synthesis of Silver Nanoparticles and Exhaustion on Cotton Fabric Simultaneously Using Laser Ablation Method," J. Nat. Fib., Vol. 17, pp. 1295-1306, 2018. [
DOI:10.1080/15440478.2018.1558160]
23. M. Ghoranneviss, S. Shahidi, A. Anvari, Z. Motaghi, J. Wiener, and I. Slamborova, "Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics," Progr. Org Coatings, Vol. 70, pp. 388-393, 2011. [
DOI:10.1016/j.porgcoat.2010.11.017]
24. S. Shahidi, M. Rashidian, and D. Dorranian, "Preparation of antibacterial textile using laser ablation method," Opt. Laser Technol, Vol. 99, pp. 145-153, 2018 [
DOI:10.1016/j.optlastec.2017.08.025]
25. S. Moniri, M.R. Hantehzadeh, M. Ghoranneviss, and M. Asadi Asadabad, "Synthesis and characterization of platinum nano sized particles by laser ablation in C2H6O2 solution," Opt. Quantum Electron., Vol. 49, pp. 174(1-20), 2017. [
DOI:10.1007/s11082-017-1007-6]
26. S. Parsian, M. Mirjalili, S. Shahidi, and M. Ghoranneviss, "The Effect of Various Catalyst on In-situ Synthesis of Carbon Nanotubes on the Glass Mat Using Thermal Chemical Vapor Deposition Method," Fib. Polym., Vol. 19, pp. 711-721, 2018. [
DOI:10.1007/s12221-018-7829-4]
27. Z. Motaghi and S. Shahidi, "Improvement the Conductivity and Flame Retardant Properties of Carboxylated Single Walled Carbon Nanotube/Cotton Fabrics Using Citric Acid and Sodium Hypophosphite," J. Nat. Fib., Vol. 15, pp. 353-362, 2018. [
DOI:10.1080/15440478.2017.1330716]
28. S. Parsian, S. Shahidi, M. Mirjalili, and M. Ghoranneviss, "In situ synthesis of carbon nanotubes on glass mat using thermal chemical vapor deposition method," Fullerenes, Nanotubes Carbon Nanostructures, Vol. 26, pp. 551-556, 2018. [
DOI:10.1080/1536383X.2018.1457650]
29. Y Herbani, I. Irmaniar, R.S. Nasution, F. Mujtahid, and S. Masse, "Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production," J. Phys: Conference, Series 985, 2018. [
DOI:10.1088/1742-6596/985/1/012005]