دوره 17، شماره 1 - ( 10-1401 )                   جلد 17 شماره 1 صفحات 64-57 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghajari S, Jahanbakhshian M, Karimzadeh R. Fabrication of Microfluidic and Optofluidic molds with SPE- 60 Photoresist: Advantages and Challenges. IJOP 2023; 17 (1) :57-64
URL: http://ijop.ir/article-1-546-fa.html
Fabrication of Microfluidic and Optofluidic molds with SPE- 60 Photoresist: Advantages and Challenges. . 1401; 17 (1) :57-64

URL: http://ijop.ir/article-1-546-fa.html


چکیده:   (334 مشاهده)
One of the basic requirements in the fabrication of microfluidic (MF) and optofluidic (OF) chips is a suitable initial mold, which is generally prepared with the help of a photoresist material. In this research, we investigate the SPE-60 photoresist as a quality alternative to the conventional SU-8 photoresist to achieve molds with thicknesses ranging from 25μm to 130μm and address the challenges of mold-making with this photoresist. The conventional photolithography method is used to assess the material's ability in mold making. The results show that SPE-60 molds have vertical edges, clean facets, and edges, complete voids between different components, and demonstrate good pattern transfer from the photomask to the SPE-60 film at various thicknesses. This article also suggests some ways to improve accuracy and reduce edge scattering. As a result, based on the experimental results, SPE-60 can be considered a cost-effective and suitable alternative to SU-8 photoresist in the fabrication of MF and OF molds.
 
     
نوع مطالعه: پژوهشي | موضوع مقاله: اندرکنش نور با ماده
دریافت: 1402/7/8 | ویرایش نهایی: 1402/11/21 | پذیرش: 1402/11/15 | انتشار: 1402/11/17

فهرست منابع
1. G. Zhu and N. Trung Nguyen, "Particle sorting in microfluidic systems," Micro and Nanosystems, vol. 2, no. 3, pp. 202-216, 2010. [DOI:10.2174/1876402911002030202]
2. N. Convery and N. Gadegaard, "30 years of microfluidics," Micro and Nano Engineering, vol. 2, pp. 76-91, 2019. [DOI:10.1016/j.mne.2019.01.003]
3. W.-C. Tian and E. Finehout, "Introduction to microfluidics," in Microfluidics for biological applications: Springer, pp. 1-34, 2008. [DOI:10.1007/978-0-387-09480-9_1]
4. J. Tang, G. Qiu, and J. Wang, "Recent development of optofluidics for imaging and sensing applications," Chemosensors, vol. 10, no. 1, p. 15, 2022. [DOI:10.3390/chemosensors10010015]
5. Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, "Optofluidic device based microflow cytometers for particle/cell detection: a review," Micromachines, vol. 7, no. 4, p. 70, 2016. [DOI:10.3390/mi7040070]
6. P. Shivhare, A. Bhadra, P. Sajeesh, A. Prabhakar, and A. Sen, "Hydrodynamic focusing and inter distance control of particle-laden flow for microflow cytometry," Microfluidics and Nanofluidics, vol. 20, pp. 1-14, 2016. [DOI:10.1007/s10404-016-1752-z]
7. A. Burklund, A. Tadimety, Y. Nie, N. Hao, and J. X. Zhang, "Advances in diagnostic microfluidics," Advances in clinical chemistry, vol. 95, pp. 1-72, 2020. [DOI:10.1016/bs.acc.2019.08.001]
8. R. Blue and D. Uttamchandani, "Recent advances in optical fiber devices for microfluidics integration," Journal of Biophotonics, vol. 9, no. 1-2, pp. 13-25, 2016. [DOI:10.1002/jbio.201500170]
9. S. M. Scott and Z. Ali, "Fabrication methods for microfluidic devices: An overview," Micromachines, vol. 12, no. 3, p. 319, 2021. [DOI:10.3390/mi12030319]
10. Y. Zhao, Q. Li, X. Hu, and Y. Lo, "Microfluidic cytometers with integrated on-chip optical systems for red blood cell and platelet counting," Biomicrofluidics, vol. 10, no. 6, p. 064119, 2016. [DOI:10.1063/1.4972105]
11. Z. Shen, Y. Zou, and X. Chen, "Characterization of microdroplets using optofluidic signals," Lab on a Chip, vol. 12, no. 19, pp. 3816-3820, 2012. [DOI:10.1039/c2lc40758b]
12. S. Hengoju et al., "Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets," Biomicrofluidics, vol. 14, no. 2, p. 024109, 2020. [DOI:10.1063/1.5139603]
13. A. Mohan, P. Gupta, A. Nair, A. Prabhakar, and T. Saiyed, "A microfluidic flow analyzer with integrated lensed optical fibers," Biomicrofluidics, vol. 14, no. 5, p. 054104, 2020. [DOI:10.1063/5.0013250]
14. Y.-J. Juang and Y.-J. Chiu, "Fabrication of polymer microfluidics: An overview," Polymers, vol. 14, no. 10, p. 2028, 2022. [DOI:10.3390/polym14102028]
15. B. K. Gale et al., "A review of current methods in microfluidic device fabrication and future commercialization prospects," Inventions, vol. 3, no. 3, p. 60, 2018. [DOI:10.3390/inventions3030060]
16. A. Alrifaiy, O. A. Lindahl, and K. Ramser, "Polymer-based microfluidic devices for pharmacy, biology, and tissue engineering," Polymers, vol. 4, no. 3, pp. 1349-1398, 2012. [DOI:10.3390/polym4031349]
17. D. Hoelzle et al., "Microfluidic device design, fabrication, and testing protocols," 2015.
18. V. Cardoso and G. Minas, "Micro total analysis systems," Microfluidics and Nanofluid. Handbook: Fabrication, Implementation and Applications; CPTF Group, Ed, pp. 319-366, 2011.
19. W. Zhou, Y. Li, Y. Sun, J. Yao, X. Song, and G. Ding, "Enhancement of Mechanical and Thermal Properties of SU-8 Photoresist with Multilayer Woven Glass Fabric Based on Micromachining Technology," Electronic Materials Letters, vol. 16, pp. 604-614, 2020. [DOI:10.1007/s13391-020-00247-8]
20. M. D. Gupta, R. B. Mishra, I. Kuriakose, and A. M. Hussain, "Determination of thermal and mechanical properties of SU-8 using electrothermal actuators," MRS Advances, vol. 7, no. 28, pp. 591-595, 2022. [DOI:10.1557/s43580-022-00330-2]
21. J. Liu et al., "Fabrication of SU-8 moulds on glass substrates by using a common thin negative photoresist as an adhesive layer," Journal of Micromechanics and Microengineering, vol. 24, no. 3, p. 035009, 2014. [DOI:10.1088/0960-1317/24/3/035009]
22. F. Ceyssens and R. Puers, "SU-8 Photoresist," in Encyclopedia of Nanotechnology, B. Bhushan Ed. Dordrecht: Springer Netherlands, pp. 2530-2543, 2012.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb