Volume 16, Issue 2 (Summer-Fall 2022)                   IJOP 2022, 16(2): 201-210 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vahedi. G N, Asgari A, Dehghan G. Detection of the O6-Carboxymethylguanine DNA Adduct in Colorectal Cancer Using a Graphene Field-Effect Transistor-Based Biosensors. IJOP 2022; 16 (2) :201-210
URL: http://ijop.ir/article-1-530-en.html
1- Faculty of Physics, University of Tabriz, Tabriz, Iran
2- Faculty of Physics, University of Tabriz, Tabriz, Iran & Photonics Devises Research Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran & School of Electrical, Electronic, and Computer Engineering; The University of Western Australia, Crawley, WA 6009, Australia
3- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
Abstract:   (698 Views)
Efforts to understand genetic diseases and mutations in biological systems are the most important driver of research development in medical and biomolecular sciences. Rapid, sensitive, accurate, and cost-effective biomolecule analysis is particularly important in diagnosis and treatment. The discovery of graphene as a new nanomaterial with a carbon structure with a single atom thickness due to its unique electronic, mechanical, thermal, and optical properties has opened a new topic in research in various biomedical sciences and the production of biosensors for biomolecule analysis. In this research, a biosensor based on a graphene field-effect transistor (GFET) is used to detect DNA with optimal accuracy and sensitivity, which can be a basis for making DNA detection tools. In the studied structure, using non-equilibrium Green function equations and Poisson equation, we study the electron transfer in graphene field-effect transistors. Then, by examining the interaction between nucleotide bases (C, G, A, T) and O6-carboxymethylguanine related to the colorectal cancer DNA sequence to detection of mutation will be identified by GFET, and their binding energy determined.
Full-Text [PDF 968 kb]   (396 Downloads)    
Type of Study: Research | Subject: Medical Optics, Optical Microscope, Biophotonics
Received: 2023/04/4 | Revised: 2023/06/20 | Accepted: 2023/06/10 | Published: 2023/06/19

References
1. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, and J.H. Lee, "Recent advances in graphene-based biosensors," Biosens. Bioelectron., Vol. 26, pp. 4637-4648, 2011. [DOI:10.1016/j.bios.2011.05.039]
2. S.J. Rodríguez, L. Makinistian, and E.A. Albanesi, "Graphene for amino acid biosensing: Theoretical study of the electronic transport," Appl. Surf. Sci., Vol. 419, pp. 540-545, 2016. [DOI:10.1016/j.apsusc.2017.05.031]
3. P. Suvarnaphaet and S. Pechprasarn, "Graphene-based materials for biosensors: A review," Sensors, Vol. 17, pp. 2161-2185, 2017. [DOI:10.3390/s17102161]
4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, pp. 109-162, 2009. [DOI:10.1103/RevModPhys.81.109]
5. A.K. Geim and K.S. Novoselov, "The rise of graphene," Nanosci. Technol. A Collect. Rev. from Nat. Journals, pp. 11-19, 2009. [DOI:10.1142/9789814287005_0002]
6. H. Tang, S.G. Menabde, T. Anwar, J. Kim, M.S. Jang, and G. Tagliabue, "Photo-modulated optical and electrical properties of graphene," Nanophoton., Vol. 11, pp. 917-940, 2022. [DOI:10.1515/nanoph-2021-0582]
7. L. Brey and H.A. Fertig, "Electronic States of Graphene Nanoribbons studied with the Dirac equation," Phys. Rev. B, Vol. 73, pp. 235411 (1-5), 2006. [DOI:10.1103/PhysRevB.73.235411]
8. S. Suzuki, Physical and Chemical properties of Carbon Nanotubes, IntechOpen, chapter. 1, 2013. [DOI:10.5772/46029]
9. G.N. Dash, S.R. Pattanaik, and S. Behera, "Graphene for electron devices: The panorama of a decade," IEEE J. Electron Devices Soc., Vol. 2, pp. 77-104, 2014. [DOI:10.1109/JEDS.2014.2328032]
10. X. Dong, Y. Shi, W. Huang, P. Chen, and L.J. Li, "Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets," Adv. Mater., Vol. 22, pp. 1649-1653, 2010. [DOI:10.1002/adma.200903645]
11. C. Wang, J. Kim, Y. Zhu, J. Yang, G.H. Lee, S. Lee, J. Yu, R. Pei, G. Liu, C. Nuckolls, J. Hone, and Q. Lin, "An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers," Biosens. Bioelectron., Vol. 71, pp. 222-229, 2015. [DOI:10.1016/j.bios.2015.04.025]
12. S. Balderston, J.J. Taulbee, E. Celaya, K. Fung, A. Jiao, K. Smith, R. Hajian, G. Gasiunas, S. Kutanovas, D. Kim, J. Parkinson, K. Dickerson, J.-J. Ripoll, R. Peytavi, H.-W. Lu, F. Barron, B.R. Goldsmith, P.G. Collins, I.M. Conboy, V. Siksnys, and K. Aran, "Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor," Nat. Biomed. Eng., Vol. 5, pp. 713-725, 2021. [DOI:10.1038/s41551-021-00706-z]
13. L. Chen, G. Li, A. Yang, J. Wu, F. Yan, and H. Ju, "A DNA-functionalized graphene field-effect transistor for quantitation of vascular endothelial growth factor," Sensors Actuators B Chem., Vol. 351, pp. 130964 (1-7), 2022. [DOI:10.1016/j.snb.2021.130964]
14. R. O'Donnell, "Modeling of nanoscale devices," Proc. IEEE, Vol. 96, pp. 1509-1510, 2008. [DOI:10.1109/JPROC.2008.927311]
15. E. Ahmadi, A. Asgari, and K. Ahmadiniar, "The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p-i-n structure," Superlattices Microstruct., Vol. 52, pp. 605-611, 2012. [DOI:10.1016/j.spmi.2012.06.014]
16. M. Bonmann, Effects of impurities on charge transport in graphene field-effect transistors, Ph.D. Thesis, Chalmers Univ. Technol., 2017. [DOI:10.1063/1.5003684]
17. H. Mohammadpour, "Quantum dot resonant tunneling FET on graphene," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 81, pp. 91-95, 2016. [DOI:10.1016/j.physe.2016.03.001]
18. H. Mohammadpour and A. Asgari, "Numerical study of quantum transport in the double-gate graphene nanoribbon field effect transistors," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 43, pp. 1708-1711, 2011. [DOI:10.1016/j.physe.2011.05.027]
19. E. Katz, DNA‐ and RNA‐Based Computing Systems, Wiley, pp. 57-80, 2020. [DOI:10.1002/9783527823086]
20. A. Travers and G. Muskhelishvili, "DNA structure and function," FEBS Journal, Vol. 282, pp. 2279-2295, 2015. [DOI:10.1111/febs.13307]
21. R.R. Sinden and R.D. Wells, "DNA structure, mutations, and human genetic disease," Curr. Opin. Biotechnol., Vol. 3, pp. 612-622, 1992. [DOI:10.1016/0958-1669(92)90005-4]
22. N.S. Green and M.L. Norton, "Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review," Anal. Chim. Acta, Vol. 853, pp. 127-142, 2015. [DOI:10.1016/j.aca.2014.10.023]
23. S. Panigrahi, A. Bhattacharya, S. Banerjee, and D. Bhattacharyya, "Interaction of nucleobases with wrinkled graphene surface: Dispersion corrected DFT and AFM studies," J. Phys. Chem. C, Vol. 116, pp. 4374-4379, 2012. [DOI:10.1021/jp207588s]
24. F.N. Novikov and G.G. Chilov, "Molecular docking: theoretical background, practical applications, and perspectives," Mendeleev Commun., Vol. 19, pp. 237-242, 2009. [DOI:10.1016/j.mencom.2009.09.001]
25. D. Kihara, Protein Structure Prediction, Humana Press, 4th Ed., pp.51-87, 2020. [DOI:10.1007/978-1-0716-0708-4]
26. A.D. Putri, B.T. Murti, S. Kanchi, M.I. Sabela, K. Bisetty, A. Tiwari, Inamuddin, and A. M. Asiri, "Computational studies on the molecular insights of aptamer induced poly(N-isopropyl acrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics," Sci. Rep., Vol. 9, pp. 1-14, 2019. [DOI:10.1038/s41598-019-44378-x]
27. F. Zhang, M. Tsunoda, K. Suzuki, Y. Kikuchi, O. Wilkinson, C.L. Millington, G.P. Margison, D.M. Williams, E.C. Morishita, and A. Takénaka, "Structures of DNA duplexes containing O6-carboxymethylguanine, a lesion associated with gastrointestinal cancer, reveal a mechanism for inducing pyrimidine transition mutations," Nucleic Acids Res., Vol. 41, pp. 5524-5532, 2013. [DOI:10.1093/nar/gkt198]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb