Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 99-106 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nejatipour R, Dadsetani M. Effects of Silicon Impurity on Optical Properties of Sc2C(OH)2 Monolayer: A DFT Study. IJOP 2022; 16 (1) :99-106
URL: http://ijop.ir/article-1-508-en.html
1- Department of Physics, Lorestan University, Khoramabad, Lorestan, Iran
Abstract:   (1137 Views)
In the density functional theory (DFT), optical properties of Sc2C(OH)2 monolayer are studied with and without silicon impurity. In the presence of silicon impurity, the structure and properties of this compound were changed from a semiconductor with a 0.57 eV band-gap to a topological insulator with a zero band-gap and a band inversion. With and without the silicon impurity, the spectral features in this compound originate from the electron transition from the p-Si and p-C to d-Sc and s-H, respectively. The values of optical constants are increased in the doped-structure with respect to the pure structure.
Full-Text [PDF 614 kb]   (918 Downloads)    
Type of Study: Research | Subject: Optical Materials and Metamaterials
Received: 2022/09/7 | Revised: 2022/11/15 | Accepted: 2022/11/26 | Published: 2022/12/23

References
1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, pp. 666-669, 2004. [DOI:10.1126/science.1102896]
2. D. Singh, S.K. Gupta, Y. Sonvane, and Igor Lukačević, "Antimonene: a monolayer material for ultraviolet optical nanodevices," J. Mater. Chem. C, Vol. 4, pp. 6386-6390, 2016. [DOI:10.1039/C6TC01913G]
3. A. Karaei Shiraz, A. Yazdanpanah Goharrizi, and S.M. Hamidi "The electronic and optical properties of armchair germanene nanoribbons," Phys. E: Low-dimension. Sys. Nanostruct., Vol. 107, pp. 150-153, 2019. [DOI:10.1016/j.physe.2018.11.019]
4. A. Karaei Shiraz and A. Yazdanpanah Goharrizi, "Optical properties of buckled bismuthine," Phys. Status Solidi B Vol. 257, pp. 1900408-1900412, 2020. [DOI:10.1002/pssb.201900408]
5. Y. Xu, B. Peng, H. Zhang, H. Shao, R. Zhang, and H. Zhu, "First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes," Ann. Phys. Vol. 529, pp. 1600152 (1-9), 2017. [DOI:10.1002/andp.201600152]
6. H. Wang, Y. Zhao, Y. Xie, X. Ma, and X. Zhang, "Recent progress in synthesis of two-dimensional hexagonal boron nitride," J Semiconduct., Vol. 38, pp. 031003 (1-14), 2017. [DOI:10.1088/1674-4926/38/3/031003]
7. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor" Phys. Rev. Lett., Vol. 105, pp. 136805 (1-4), 2010. [DOI:10.1103/PhysRevLett.105.136805]
8. C.X. Zhao and J.F. Jia "Stanene: A good platform for topological insulator and topological superconductor," Front. Phys. Vol. 15, pp. 53201 (1-15), 2020. [DOI:10.1007/s11467-020-0965-5]
9. M.A. Kharadi, G.F.A. Malik, F.A. Khanday, K.A. Shah, S. Mittal, and B.K. Kaushik, "Silicene: From Material to Device Applications," ECS J. Solid State Sci. Technol. Vol. 9, pp. 115031 (1-20), 2020. [DOI:10.1149/2162-8777/abd09a]
10. M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G.L. Lay, "Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene," New J. Phys. Vol. 16, pp. 095002 (1-10), 2014. [DOI:10.1088/1367-2630/16/9/095002]
11. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, "Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility," ACS Nano, Vol. 8, pp. 4033-4041, 2014. [DOI:10.1021/nn501226z]
12. Y. Chen, A. Star, and S. Vidal, "Sweet carbon nanostructures: carbohydrate conjugates with carbon nanotubes and graphene and their applications," Chem. Soc. Rev., Vol. 42, pp. 4532-4542, 2013. [DOI:10.1039/C2CS35396B]
13. R. Momeni Feili, M. Dadsetani, R. Nejatipour, and A. Ebrahimian, "Electron Energy Loss Structures of Terminated Scandium and Hafnium MXene Monolayers from First-Principles Calculations," J. Elec. Mater. Vol. 49, pp. 2502-2520, 2020. [DOI:10.1007/s11664-020-07946-w]
14. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2," Adv. Mater. Vol. 23, pp. 4248-4253, 2011. [DOI:10.1002/adma.201102306]
15. M.W. Barsoum, "The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates," Prog. Solid State Chem. Vol. 28, pp. 201-281, 2000. [DOI:10.1016/S0079-6786(00)00006-6]
16. Z.M. Sun, "Progress in research and development on MAX phases: a family of layered ternary compounds," Int. Mater. Rev. Vol. 56, pp. 143-166, 2011. [DOI:10.1179/1743280410Y.0000000001]
17. M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, "Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases," J. Phys.: Condens. Matter, Vol. 26, pp. 505503 (1-12), 2014. [DOI:10.1088/0953-8984/26/50/505503]
18. M.R. Lukatskaya, O. Mashtalir, C.E. Renyohan, Y. Dallagnese, P.Rozier, P.L. Taberna M. Naguib, P. Simonmichel W. Barsoum, and Y. Gogotsi, "Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide," Science, Vol. 341, pp. 1502-1505, 2013. [DOI:10.1126/science.1241488]
19. M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, "Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides," Adv. Funct. Mater., Vol. 23, pp. 2185-2192, 2013. [DOI:10.1002/adfm.201202502]
20. H. Zhang, G. Yang, X. Zuo, H. Tang, Q. Yanga, and G. Li, "Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts," J. Mater. Chem. A, Vol. 4, pp. 12913-12920, 2016. [DOI:10.1039/C6TA04628B]
21. H. Lashgari, M.R. Abolhassani, A. Boochani, S.M. Elahi, and J. Khodadadi, "Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations," Solid State Commun., Vol. 195, pp. 61-69, 2014. [DOI:10.1016/j.ssc.2014.06.008]
22. E. Balcı, Ü.Ö. Akkuş, and S. Berber, "Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator," J Phys. Conden. Matter., Vol. 30, pp. 155501 (1-12), 2018. [DOI:10.1088/1361-648X/aab41e]
23. P. Blaha, K. Schwarzz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, "WIEN2k: An APW+lo program for calculating the properties of solids," J. Chem. Phys., Vol. 152, pp. 074101 (1-30), 2020. [DOI:10.1063/1.5143061]
24. J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., Vol. 77, pp. 3865-3868, 1996. [DOI:10.1103/PhysRevLett.77.3865]
25. C. Ambosch-Draxl and J.O. Sofo, "Linear optical properties of solids within the full-potential linearized augmented planewave method," Comp. Phys. Commun., Vol. 175, pp. 1-14, 2006. [DOI:10.1016/j.cpc.2006.03.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb