Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 65-72 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kabiri A, Azarian A. Sensitivity of Silver Square and Triangular Chiral Plasmon Nanosensors. IJOP 2021; 15 (1) :65-72
URL: http://ijop.ir/article-1-453-en.html
1- Department of Physics, University of Qom, Qom, Iran
Abstract:   (2939 Views)
Plasmonic nanosensors have emerged as a powerful tool for biosensing and other applications. Therefore, efforts are underway to achieve higher sensitivity for these nanosensors. In line with this goal, we have investigated the sensitivity of silver square and triangular chiral nanosensors based on two strategies, Localized Surface Plasmon Resonance (LSPR)-based and Circular Dichroism (CD)-based sensing. Chiral nanostructure parameters (height, diameter) and the angle of incidence light have been optimized with calculation method (3-D finite-difference time-domain (3-D- FDTD)) in order to obtain best localized surface plasmon resonance and consequently the highest sensitivity. The calculation results show that sensitivitys~1727 and 1658nmRIU-1 can be achieved in LSPR- and CD-based sensing method respectively for square chiral nanostructure, which are significantly more than previous works.
Full-Text [PDF 321 kb]   (1441 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2021/03/10 | Revised: 2021/04/21 | Accepted: 2021/08/27 | Published: 2021/12/30

References
1. D.A. Stuart, A.J. Haes, C.R. Yonzon, E.M. Hicks, and R.P. Van Duyne "Biological applications of localized surface plasmonic phenomenae," IEE Proc Nanobiotechnol, Vol. 152, pp. 13-32, 2005. [DOI:10.1049/ip-nbt:20045012] [PMID]
2. I.H. El-Sayed, X. Huang and M.A. El-Sayed "Surface plasmon resonance scattering, and absorption of anti-EGRF antibody conjugated gold nanoparticles in cancer diagnostics," Nano Lett, Vol. 5, pp. 829-834, 2005. [DOI:10.1021/nl050074e] [PMID]
3. L. Cognet, C. Tardin, D. Boyer, D. Choquet, and P. Tamarat, "Single metallic nanoparticle imaging for protein detection in cells," B. Proc. Natl. Acad. Sci. U.S.A, Vol. 100, pp. 11350-11355, 2003. [DOI:10.1073/pnas.1534635100] [PMID] [PMCID]
4. A.D. McFarland and R.P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. Vol. 3, pp. 1057-1062, 2003. [DOI:10.1021/nl034372s]
5. B. Liedberg, C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuat. Vol. 4, pp. 299-304, 1983. [DOI:10.1016/0250-6874(83)85036-7]
6. J. Langer, S.M. Novikov, and L.M. Liz-Marzan "Sensing using plasmonic nanostructures and nanoparticles," Nanotechnology, Vol. 26, pp. 322001 (1-28), 2015. [DOI:10.1088/0957-4484/26/32/322001] [PMID]
7. M. Manzano, P. Vizzini, K. Jia, P.M. Adam, and R.E. Ionescu, "Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine," Sens. Actuators B Chem, Vol. 223, pp. 295-300, 2016. [DOI:10.1016/j.snb.2015.09.099]
8. A.B. Dahlin, J.O. Tegenfeldt, and F. Hook "Improving the instrumental resolution of sensors based on localized surface plasmon resonance," Anal. Chem. Vol. 78, pp. 4416-4426, 2006 [DOI:10.1021/ac0601967] [PMID]
9. H.M. Kim, K.T. Nam, S.K. Lee, and J.H. Park, "Fabrication and measurement of microtip array-based LSPR sensor using bundle fber," Sens. Actuat. A Phys. Vol. 271, pp. 146-152, 2018. [DOI:10.1016/j.sna.2018.01.021]
10. S.K. Srivastava, R.K. Verma, and B.D. Gupta, "Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor," Appl. Opt. Vol. 48, pp. 3796-3802, 2009. [DOI:10.1364/AO.48.003796] [PMID]
11. H.H. Jeong, N. Erdene, J.H. Park, D.H. Jeong, H.Y. Lee, and S.K. Lee, "Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor," Biosens. Bioelectron. Vol. 39, pp. 346-351, 2013. [DOI:10.1016/j.bios.2012.08.013] [PMID]
12. L. Xie, X. Yan, and Y. Du, "An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules," Biosens. Bioelectron. Vol. 53, pp. 58-64, 2014. [DOI:10.1016/j.bios.2013.09.031] [PMID]
13. K.M. Mayer and J.H. Hafner, "Localized Surface Plasmon Resonance Sensors," Chem. Rev. Vol. 111, pp. 3828-3857,2011. [DOI:10.1021/cr100313v] [PMID]
14. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M. Liz-Marzán, "LSPR-based nanobiosensors," Nano Today, Vol. 4, pp. 244-251, 2009. [DOI:10.1016/j.nantod.2009.04.001]
15. Y. Chen and H. Ming, "Review of surface plasmon resonance and localized surface plasmon resonance," Photonic Sensors, Vol. 2, pp. 37-49, 2012. [DOI:10.1007/s13320-011-0051-2]
16. H. Jans and Q. Huo, "Gold nanoparticle-enabled biological and chemical detection and analysis," Chem. Soc. Rev. Vol. 41, pp. 2849-2866, 2012. [DOI:10.1039/C1CS15280G] [PMID]
17. K.S. Lee and M.A. El-Sayed, "Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition," J. Phys. Chem. B, Vol. 110, pp. 19220-19225, 2006. [DOI:10.1021/jp062536y] [PMID]
18. K.L. Kelly, E. Coronado, L. Zhao, and G.C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B, Vol. 107, pp. 668-677, 2003. [DOI:10.1021/jp026731y]
19. F. Tam and C. Moran, "Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment," J. Phys. Chem. B, Vol. 108, pp. 17290-17294, 2004. [DOI:10.1021/jp048499x]
20. G. Raschke, S. Brogl, A.S. Susha, A.L. Rogach, T.A. Klar, J. Feldmann, and B. Fieres, "Gold Nanoshells Improve Single Nanoparticle Molecular Sensors," Nano Lett. Vol. 4, pp. 1853-1857, 2004. [DOI:10.1021/nl049038q]
21. A. Gole and C. J. Murphy, "Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed," Chem. Mater, Vol. 16, pp. 3633-3640, 2004. [DOI:10.1021/cm0492336]
22. K.S. Lee and M.A. El-Sayed, "Gold and Silver Nanoparticles in Sensing and Imaging:  Sensitivity of Plasmon Response to Size, Shape, and Metal Composition," J. Phys. Chem. B, Vol. 110, pp. 19220-19225, 2006. [DOI:10.1021/jp062536y] [PMID]
23. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, "Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine," J. Phys. Chem. B, Vol. 110, pp. 7238-7248, 2006. [DOI:10.1021/jp057170o] [PMID]
24. C. Helgert, E. Pshenay-Severin, M. Falkner, Ch. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, "Chiral metamaterial Composed of Three Dimensional Plasmonic Nanostructures," Nano Lett. Vol. 11, pp. 4400-4404, 2011. [DOI:10.1021/nl202565e] [PMID]
25. B. Frank, "Large Area 3D Chiral Plasmonic Structures," ACS Nano, Vol. 7, pp. 6321-6329, 2013. [DOI:10.1021/nn402370x] [PMID]
26. A. Belardini, A. Benedetti, M. Centini, G. Leahu, F. Mura, S. Sennato, C. Sibilia, V. Robbiano, M. Caterina Giordano, Ch. Martella, D. Comoretto, and F. Buatier de Mongeot, "Second Harmonic Generation Circular Dichroism from Self Ordered Hybrid Plasmonic-Photonic Nanosurfaces," Adv. Opt. Mater, Vol. 2, pp. 208-213, 2014. [DOI:10.1002/adom.201300385]
27. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. De Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies," ACS Photon, Vol. 2, pp. 105-114, 2015. [DOI:10.1021/ph500318p]
28. H.H. Jeong, A.G. Mark, and P. Fischer, "Magnesium plasmonics for UV applications and chiral sensing," Chem. Commun. Vol. 52, pp. 12179-12182, 2016. [DOI:10.1039/C6CC06800F] [PMID]
29. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. Mikhaylovskiy, A. Lapthorn, S. Kelly, L. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol, Vol. 5, pp. 783-787, 2010. [DOI:10.1038/nnano.2010.209] [PMID]
30. V.K. Valev, J.J. Baumberg, C. Sibilia, and T.Verbiest, "Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook," Adv. Mater. Vol. 25, pp. 2517-2534, 2013. [DOI:10.1002/adma.201205178] [PMID]
31. S. Zhang, J. Zhou, Y.-Sh. Park, J. Rho, R. Singh, S. Nam, A Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, "Photoinduced handedness switching in terahertz chiral metamolecules," Nat. Commun. Vol. 3, pp. 942-958, 2012. [DOI:10.1038/ncomms1908] [PMID]
32. S.A. Palkar, N.P. Ryde, M.R. Schure, and N. Gupta, "Finite Difference Time Domain Computation of Light Scattering by Multiple Colloidal Particles," Langmuir, Vol. 14, pp. 3484-3492, 1998. [DOI:10.1021/la971057a]
33. A. Azarian and A. Kabiri, "Ultrahigh sensitive silver trigonal chiral nanosensors," Optik, Vol. 224, pp. 165663, 2020. [DOI:10.1016/j.ijleo.2020.165663]
34. H.H. Jeong, A.G. Mark, M.A. Correa, I. Kim, P. Oswald, T.C. Lee, and P. Fischer, "Dispersion and shape engineered plasmonic nanosensors," Nature Commun. Vol. 7, pp. 11331 (1-7), 2016. [DOI:10.1038/ncomms11331] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb