Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 115-124 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bazouband F, Rahimpour A. Improving the Triple Coupled Ring-Resonator Performance as an Optical Filter. IJOP 2021; 15 (2) :115-124
URL: http://ijop.ir/article-1-448-en.html
1- Department of Physics, Faculty of Science, Fasa University, Fasa, Iran.
2- Department of Physics, Faculty of Science, Fasa University, Fasa, Iran. & Electronic Engineering, Faculty of Engineering, Islamic Azad University of Fasa Branch, Fasa, Iran.
Abstract:   (2294 Views)
In this paper, a three ring-resonator serially coupled is considered as an optical filter. We are going to improve the performance of the designed optical filter by increasing the quality factor and finesse of filtered wavelengths. The first and last rings are coupled to the bus waveguides that carry the input and output fields. The effect of coupling parameters and ring radii on the filtering of operating wavelengths which are between 1545-1550 nm with narrow Free Spectral Range (FSR) less than 0.5 nm is investigated. Using the transfer matrix method, all the rotating and output fields are obtained. FSR, Full Width at Half Maximum (FWHM) and Finesse (F) are evaluated by the wavelength response plots of the output ports obtained in Wolfram Mathematica. The behavior of structure is analyzed by a new approach in order to filter the resonant wavelengths of the transmission channel with higher finesse.
Full-Text [PDF 599 kb]   (1367 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/01/24 | Revised: 2021/11/29 | Accepted: 2021/12/25 | Published: 2022/06/22

References
1. L.F. Stokes, M. Chodorow, and H.J. Shaw, "All-single-mode fiber resonator," Opt. Lett. Vol. 7, pp. 288-290, 1982. [DOI:10.1364/OL.7.000288] [PMID]
2. RM. Shelby, MD. Levenson, and SH. Perlmutter, "Bistability and other effects in a nonlinear fiber-optic ring resonator," J. Opt. Soc. Amer. B Vol. 5, pp. 347-357, 1988. [DOI:10.1364/JOSAB.5.000347]
3. R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. Vol. 7, pp. 1447-1449, 1995. [DOI:10.1109/68.477278]
4. S. Malthesha and N. Krishnaswamy, "Improvement in quality factor of double microring resonator for sensing applications," J. Nanophoton. Vol. 13, pp. 026014 (1-20), 2019. [DOI:10.1117/1.JNP.13.026014]
5. A. Noury, X. Le Roux, L. Vivien, and N. Izard, "Carbon nanotube photonics: using microring resonators for tailoring semiconducting carbon nanotubes photoluminescence," J. Nanophoton. Vol.10, pp. 012513 (1-6), 2015. [DOI:10.1117/1.JNP.10.012513]
6. A.W. Poon, X. Luo, F. Xu, and H. Chen, "Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection," Proc. IEEE 97, pp. 1216-1238, 2009. [DOI:10.1109/JPROC.2009.2014884]
7. B. Troia, V.M. Passaro, A.Z. Khokhar, M. Nedeljkovic, J.S. Penades, and G.Z. Mashanovich, "Design and fabrication of silicon cascade-coupled ring resonators operating in mid infrared," Proc. Fotonica AEIT Italian Conference on Photonics Technologies, pp. 1-4, 2014 [DOI:10.1109/Fotonica.2014.6843856]
8. G.K. Bharti, J.K. Rakshit, M.P. Singh, and P. Yupapin, "Design of all-optical universal logic gates using mode-conversion in single silicon microring resonator," J. Nanophoton. Vol. 13, pp. 036002 (1-13), 2019. [DOI:10.1117/1.JNP.13.036002]
9. Y. Chen, J. Feng, Z. Zhou, J. Yu, C.J. Summers, and D.S. Citrin, "Fabrication of silicon microring resonator with smooth sidewalls," J. Micro/Nanolithography, MEMS, and MOEMS, Vol. 8, pp. 043060 (1-5), 2009. [DOI:10.1117/1.3258487]
10. J. Kedia and N. Gupta, "An FDTD analysis of serially coupled double ring resonator for DWDM," Optik, Vol. 126, pp. 5641-5644, 2015. [DOI:10.1016/j.ijleo.2015.09.031]
11. R. Novitski, B.Z. Steinberg, and J. Scheuer, "Finite-difference time-domain study of modulated and disordered coupled resonator optical waveguide rotation sensors," Opt. Express, Vol. 22, pp. 23153-23163, 2014. [DOI:10.1364/OE.22.023153] [PMID]
12. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, "The first decade of coupled resonator optical waveguides: bringing slow light to applications," Laser Photon. Rev. Vol. 6, pp. 74-96, 2012. [DOI:10.1002/lpor.201100018]
13. C. Taddei, L. Zhuang, M. Hoekman, A. Leinse, and R. Oldenbeuving, P. van Dijk, and C. Roeloffzen, "Fully reconfigurable coupled ring resonator-based bandpass filter for microwave signal processing," Proc. 9th Asia-Pacific Microwave Photonics Conference (APMP), pp. 44-47, 2014 [DOI:10.1109/MWP.2014.6994485]
14. R.M. Shelby, M.D. Levenson, D.F. Walls, A. Aspect, and G.J. Milburn, "Generation of squeezed states of light with a fiber-optic ring interferometer," Phys. Rev. A, Vol. 33, pp. 4008-4025, 1986. [DOI:10.1103/PhysRevA.33.4008] [PMID]
15. M.Y. Nada, M.A. Othman, O. Boyraz, and F. Capolino, "Giant resonance and anomalous quality factor scaling in degenerate band edge coupled resonator optical waveguides," J. Lightwave Technol. Vol. 36, pp. 3030-3039, 2018. [DOI:10.1109/JLT.2018.2822600]
16. C. Taddei, L. Zhuang, C.G. Roeloffzen, M. Hoekman, and K.J. Boller, "High-selectivity on-chip optical bandpass filter with sub-100-MHz flat-top and under-2 shape factor," IEEE Photon. Technol. Lett. Vol. 31, pp. 455-458, 2019. [DOI:10.1109/LPT.2019.2897859]
17. Z. Bian, B. Liu, and A. Shakouri, "InP-based passive ring-resonator-coupled lasers," IEEE J. Quantum Electron. Vol. 39, pp. 859-865, 2003. [DOI:10.1109/JQE.2003.813222]
18. L. Zhou, X. Wang, L. Lu, and J. Chen, "Integrated optical delay lines: a review and perspective," Chin. Opt. Lett. Vol. 16, 101301, 2018. [DOI:10.3788/COL201816.101301]
19. N.H. Fouad, A.O. Zaki, D.C. Zografopoulos, R. Beccherelli, and M.A. Swillam, "Low power hybrid plasmonic microring-on-disks electro-optical modulators," J. Nanophoton. Vol. 11, pp. 016014 (1-8), 2017. [DOI:10.1117/1.JNP.11.016014]
20. J.K. Poon, J. Scheuer, S. Mookherjea, G.T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express, Vol. 12, pp. 90-103, 2004. [DOI:10.1364/OPEX.12.000090] [PMID]
21. T.G. Nguyen, K. Yego, G. Ren, A. Boes, and A. Mitchell, "Microwave engineering filter synthesis technique for coupled ridge resonator filters," Opt. Express, Vol. 27 pp. 34370-34381, 2019. [DOI:10.1364/OE.27.034370] [PMID]
22. Y. Liu, D. Jiang, W. Cao, T. Yang, L. Xia, and R .Xu, "Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials," Optik, Vol. 127, pp. 10216-10222, 2016. [DOI:10.1016/j.ijleo.2016.08.034]
23. S. Xiao, M.H. Khan, H. Shen, and M. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Express, Vol. 15, pp. 7489-7498, 2007. [DOI:10.1364/OE.15.007489] [PMID]
24. Z.Q. Hui, Y. Zhang, M. Yang, S. Wei, M. Zhang, and F. He, "Nonconcentric triple-microring resonator for label-free on-chip sensing with high figure-of-merit," J. Nanophoton. Vol. 11, pp. 036014 (1-14), 2017. [DOI:10.1117/1.JNP.11.036014]
25. C.K. Madsen and G. Lenz, "Optical all-pass filters for phase response design with applications for dispersion compensation," IEEE Photon. Technol. Lett. Vol. 10, pp. 994-996, 1998. [DOI:10.1109/68.681295]
26. S. Song, X. Yi, S.X. Chew, L. Li, L. Nguyen, and R. Zheng, "Optical single-sideband modulation based on silicon-on-insulator coupled-resonator optical waveguides," Opt. Eng. Vol. 55, pp. 031114 (1-6), 2015. [DOI:10.1117/1.OE.55.3.031114]
27. S. Javanshir, A. Pourziad, and S. Nikmehr, "Optical temperature sensor with micro ring resonator and graphene to reach high sensitivity," Optik, Vol. 180, pp. 442-446, 2019. [DOI:10.1016/j.ijleo.2018.11.124]
28. S. Ranjan and S. Mandal, "Performance analysis of quadruple asymmetrical optical micro ring resonator as optical filter," Optik, Vol. 171, pp. 821-832, 2018. [DOI:10.1016/j.ijleo.2018.06.138]
29. M.R. Almasian and K. Abedi, "Performance improvement of wavelength division multiplexing based on photonic crystal ring resonator," Optik, Vol. 126, pp. 2612-2615, 2015. [DOI:10.1016/j.ijleo.2015.06.027]
30. M. Humer, R. Guider, F. Hackl, and T. Fromherz, "Polymer-embedded colloidal lead-sulfide nanocrystals integrated to vertically slotted silicon-based ring resonators for telecom applications," J. Nanophoton. Vol. 7, pp. 073076 (1-12), 2013. [DOI:10.1117/1.JNP.7.073076]
31. L. Gai, J. Li, and Y. Zhao, "Preparation and application of microfiber resonant ring sensors: A review," Optics Laser Technol Vol. 89, pp. 126-136, 2017. [DOI:10.1016/j.optlastec.2016.10.002]
32. J. Scheuer, "Quantum and thermal noise limits of coupled resonator optical waveguide and resonant waveguide optical rotation sensors," J. Opt. Soc. Amer. B, Vol. 33, pp. 1827-1834, 2016. [DOI:10.1364/JOSAB.33.001827]
33. D.G. Rabus, Integrated Ring Resonators: The Compendium, Springer, pp. 3-34, 2007.
34. D.H. Geuzebroek and A. Driessen, Ring-Resonator-Based Wavelength Filters, Wavelength Filters in Fibre Optics, Berlin: Springer, pp. 341-379, 2006. [DOI:10.1007/3-540-31770-8_9]
35. Z. Zhou, H. Wu, J. Feng, J. Hou, H. Yi, and X. Wang, "Silicon nanophotonic devices based on resonance enhancement," J. Nanophoton. Vol. 4, pp. 041001 (1-24), 2010. [DOI:10.1117/1.3527260]
36. J.Z. Sun, L. Zhang, and F. Gao, "Switching terahertz waves with graphene-integrated split-ring resonator," Optik, Vol. 127, pp. 8096-8102, 2016. [DOI:10.1016/j.ijleo.2016.05.151]
37. A. Melloni, "Synthesis of a parallel-coupled ring-resonator filter," Opt, Lett, Vol. 26, pp. 917-919, 2001. [DOI:10.1364/OL.26.000917] [PMID]
38. D. Kalantarov, "Tunable low dispersion optical delay line using three coupled micro-resonators," J. Optics, Vol. 19, pp. 115802 (1-13), 2017. [DOI:10.1088/2040-8986/aa8c42]
39. A.M. Prabhu, A. Tsay, Z. Han, V. Van, "Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR," IEEE Photon. Technol. Lett. Vol. 21, pp. 651-653, 2009. [DOI:10.1109/LPT.2009.2015889]
40. S.E. El-Zohary, A.A. Azzazi, H. Okamoto, T. Okamoto, M. Haraguchi, and M.A. Swillam, "Resonance-based integrated plasmonic nanosensor for lab-on-chip applications," J. Nanophoton. Vol. 7, pp. 073077 (1-10), 2013. [DOI:10.1117/1.JNP.7.073077]
41. M.Y. Nada, M.A. Othman, F. Capolino, "Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy," Phys. Rev. B, Vol. 96, pp. 184304 (1-15), 2017. [DOI:10.1103/PhysRevB.96.184304]
42. H.L. Liew, Advanced Silicon Microring Resonator Filter Architectures for Optical Spectral Engineering, PhD Dissertation, University of Alberta, 2009.
43. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. Vol. 35, pp. 1322-1331, 1999. [DOI:10.1109/3.784592]
44. A.M. Prabhu, H.L. Liew, and V. Van, "Experimental determination of coupled-microring filter parameters via pole-zero extraction," Opt. Express, Vol. 16, pp. 14588-14596, 2008. [DOI:10.1364/OE.16.014588] [PMID]
45. F. Turri, Experiments and modelling of vertically coupled Microresonators, PhD Dissertation, University of Trento, 2017.
46. D.G. Rabus and C. Sada, Integrated Ring Resonators, Compendium, Springer, pp. 3-46, 2020. [DOI:10.1007/978-3-030-60131-7_2]
47. R.F. Aguinaldo, Silicon photonics with applications to data center networks, PhD Dissertation, University of California, San Diego, 2014.
48. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment," IEEE J. Quantum Electron. Vol. 46, pp. 1158-1169, 2010. [DOI:10.1109/JQE.2010.2044633]
49. P. Panindre, N.S. Mousavi, B. Paredes, M. Rasras, and S. Kumar, "Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator," Appl. Sci. Vol. 11, pp. 8659, 2021. [DOI:10.3390/app11188659]
50. S.J. Son, S. Kim, N.E. Yu, and D.K. Ko, "Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator," Current Opt. Photon. Vol. 5, pp. 538-543, 2021.
51. Q. Li, G. Moille, H. Taheri, A. Adibi, and K. Srinivasan, "Improved coupled-mode theory for high-index-contrast photonic platforms," Phys. Rev. A, Vol. 102, pp. 063506 (1-9), 2020. [DOI:10.1103/PhysRevA.102.063506] [PMID] [PMCID]
52. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, and S, Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photon. Rev. Vol. 6, pp. 47-73, 2012. [DOI:10.1002/lpor.201100017]
53. A.R. Bahrampour, F. Bazouband, and V. Nickfarjam, "Effect of direct coupling of microrings on the gain bandwidth of cascade microring Raman amplifier," Opt. Commun. Vol. 283, pp. 2939-2946, 2010. [DOI:10.1016/j.optcom.2010.03.045]
54. A.R. Bahrampour and F. Bazouband, "Gain ripple minimization in the wide-band SCISSOR Raman amplifier," Opt. Commun. Vol. 282, pp. 1648-1653, 2009. [DOI:10.1016/j.optcom.2008.12.078]
55. S. Chauhan and R. Letizia, "Photonic crystal-microring resonators for tunable delay lines," arXiv:1811.07828, 2018.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb