Volume 14, Issue 2 (Summer-Fall 2020)                   IJOP 2020, 14(2): 135-142 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sherzad A, zare H, shahedi Z, Ostovari F, Fazaeli Y, Pourghobadi Z. Effect of pH on Optical Properties of Graphene Oxide Quantum Dots. IJOP. 2020; 14 (2) :135-142
URL: http://ijop.ir/article-1-411-en.html
1- Physics Department, Faculty of Science, Yazd University, Yazd, Iran
2- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
3- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
Abstract:   (897 Views)
Luminescent graphene oxide quantum dots (GOQDs) have attracted tremendous attention from scientists in chemistry, materials, biology, and physics science. They have specific properties such as low cytotoxicity, excellent electrochemical and optical properties, resistance to photo-bleaching, and good stability. In this study, GOQDs were synthesized using a simple and straightforward methodology. The synthesized GOQDs were characterized by Fourier Transform Infrared (FTIR) analyzer, ultraviolet–visible spectrophotometry (UV–VIS) absorption, Photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM) analyses. Then, optical properties of GOQDs such as absorption and luminescence with various pH values were investigated. GOQDs show absorption in the ultraviolet (UV) region and their position of photoluminescence peak is independent of pH value. The average size of QDs is less than 5 nm, as revealed by TEM. The GOQDs show green luminescence under UV irradiation (360 nm).
Full-Text [PDF 391 kb]   (576 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/05/27 | Revised: 2020/07/23 | Accepted: 2020/08/24 | Published: 2021/05/20

1. D. Pan, J. Zhang, Z. Li, and M. Wu, "Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots," Adv. Mater. Vol. 22, pp. 734-738, 2010. [DOI:10.1002/adma.200902825]
2. H. Cheng, Y. Zhao, Y. Fan, X. Xie, L. Qu, and G. Shi, "Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement," Acs Nano, Vol. 6, pp. 2237-2244, 2012. [DOI:10.1021/nn204289t]
3. J. Shen, Y. Zhu, X. Yang, and C. Li, "Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices," Chem Comm. Vol. 48, pp. 3686-3699, 2012. [DOI:10.1039/c2cc00110a]
4. Ch. X. Guo, Y. Dong, H.B. Yang, and Ch. M. Li "Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F‐doped SnO2 glass for enhanced photoelectrochemical water splitting," Adv. Energy Mater. Vol. 3, pp. 997-1003, 2013. [DOI:10.1002/aenm.201300171]
5. L. Chen, Ch.X. Guo, Q. Zhang, Y. Lei, J. Xie, Sh. Ee, G. Guai, Q. Song, and Ch.M. Li, "Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells," ACS Appl. Mater. Interfaces, Vol. 5, pp. 2047-2052, (2013. [DOI:10.1021/am302938a]
6. Y. Xu, X. Li, G. Hu, T. Wu, Y. Luo, L. Sun, T. Tang, J. Wen, H. Wang, and M. Li, "Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors," Appl. Surf. Sci. Vol. 422, pp. 847-855, 2017. [DOI:10.1016/j.apsusc.2017.05.189]
7. J. Sun, S. Yang, Zh. Wang, H. Shen, T. Xu, L. Sun, H. Li, W. Chen, X. Jiang, G. Ding, Zh. Kang, X. Xie, and M. Jiang, "Ultra‐High Quantum Yield of Graphene Quantum Dots: Aromatic‐Nitrogen Doping and Photoluminescence Mechanism," Particle & Particle Systems Characterization, Vol. 32, pp. 434-440, 2015. [DOI:10.1002/ppsc.201400189]
8. Y. Xu, H. Bai, G. Lu, Ch. Li, and G. Shi, "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets," J. Am. Chem. Soc. Vol. 130, pp. 5856-5857, 2008. [DOI:10.1021/ja800745y]
9. F. Bonaccorso, Z. Sun, T.A. Hasan, and A.C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics, Vol. 4, pp. 611-622, 2010. [DOI:10.1038/nphoton.2010.186]
10. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, Vol. 458, pp. 872-876, 2009. [DOI:10.1038/nature07872]
11. A.K. Geim, "Graphene: status and prospects." Science, Vol. 324, pp. 1530-1534, 2009. [DOI:10.1126/science.1158877]
12. M.I. Katsnelson, "Graphene: carbon in two dimensions," Mater. Today, Vol. 10, pp. 20-27, 2007. [DOI:10.1016/S1369-7021(06)71788-6]
13. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, and Y. Lina, "Graphene based electrochemical sensors and biosensors: a review," Electroanalysis: An International J. Devoted to Fundamental and Practical Aspects of Electroanalysis, Vol. 22, pp. 1027-1036, 2010. [DOI:10.1002/elan.200900571]
14. X. Huang, X. Qi, F. Boey, and H. Zhang, "Graphene-based composites," Chem. Soc. Rev. Vol. 41, pp. 666-686, 2012. [DOI:10.1039/C1CS15078B]
15. Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, and S. Wang, "Sulfur‐Doped Graphene Derived from Cycled Lithium-Sulfur Batteries as a Metal‐Free Electrocatalyst for the Oxygen Reduction Reaction," Angew. Chem. Vol. 54, pp. 1888-1892, 2015. [DOI:10.1002/anie.201410258]
16. Sh. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, "Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging," Angew. Chem. Vol. 52, pp. 3953-3957, 2013. [DOI:10.1002/anie.201300519]
17. H. Peng and J. Travas-Sejdic, "Simple aqueous solution route to luminescent carbogenic dots from carbohydrates," Chem. Mater. Vol. 21, pp. 5563-5565, 2009. [DOI:10.1021/cm901593y]
18. S. Liu, N. Zhao, Z. Cheng, and H. Liu, "Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase," Nanoscale, Vol. 7, pp. 6836-6842, 2015. [DOI:10.1039/C5NR00070J]
19. S. Gómez-de Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernández, C. Sánchez-González, C.S. Martínez-Cisneros, M. Puyol, L.F. Capitan-Vallvey, J. Alonso-Chamarro, "Microsystem-assisted synthesis of carbon dots with fluorescent and colorimetric properties for pH detection," Nanoscale, Vol. 6, pp. 6018-6024, 2014. [DOI:10.1039/C4NR00573B]
20. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, Ch. Man Luk, S. Zeng, J. Hao, and Sh. Ping Lau, "Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots," ACS Nano, Vol. 6, pp. 5102-5110, 2012. [DOI:10.1021/nn300760g]
21. S.Y. Lim, W. Shen, and Z. Gao, "Carbon quantum dots and their applications," Chem. Soc. Rev. Vol. 44, pp. 362-381, 2015. [DOI:10.1039/C4CS00269E]
22. H. Li, Z. Kang, Y. Liu, and S.T. Lee, "Carbon nanodots: synthesis, properties and applications," J. Mater. Chem. Vol. 22, pp. 24230-24253, 2012. [DOI:10.1039/c2jm34690g]
23. H. Liu, T. Ye, and C. Mao, "Fluorescent carbon nanoparticles derived from candle soot," Angew. Chem. Vol. 46, pp. 6473-6475, 2007. [DOI:10.1002/anie.200701271]
24. Y. Dong, C. Chen, X. Zheng, L. Gao, Zh. Cui, H. Yang, Ch. Guo, Y. Chi, and Ch. Ming Li, "One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black," J. Mater. Chem. Vol. 22, pp. 8764-8766, 2012. [DOI:10.1039/c2jm30658a]
25. H. Yuan, D. Li, Y. Liu, X. Xu, and C. Xiong, "Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting p-nitroaniline in both aqueous and soil systems," Analyst. Vol. 140, pp. 1428-1431, 2015. [DOI:10.1039/C4AN01869A]
26. L. Zheng, Y. Chi, Y. Dong, J. Lin, and B. Wang, "Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite," J. Am. Chem. Soc. Vol. 131, pp. 4564-4565, 2009. [DOI:10.1021/ja809073f]
27. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. Jaouad Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. Erkan Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, "Quantum-sized carbon dots for bright and colorful photoluminescence," J. Am. Chem. Soc. Vol. 128, pp. 7756-7757, 2006. [DOI:10.1021/ja062677d]
28. M. Bacon, S.J. Bradley, and T. Nann, "Graphene quantum dots," Particle & Particle Systems Characterization, Vol. 31, pp. 415-428, 2014. [DOI:10.1002/ppsc.201300252]
29. J.M. Yuan, R. Zhao, Z.J. Wu, W. Li, and X.G. Yang "graphene oxide quantum dots exfoliated from carbon fibers by microwave irradiation: two photoluminescence centers and self‐assembly behavior," Small, Vol. 14, pp. 1703714, 2018. [DOI:10.1002/smll.201703714]
30. Ch. Ran, M. Wang, W. Gao, Zh. Yang, J. Shao, J. Deng, and X. Song, "A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles," RSC advances, Vol. 4, pp. 21772-21776, 2014. [DOI:10.1039/C4RA03542A]
31. Y. Feng, J. Zhao, X. Yan, F. Tang, and Q. Xue, "Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction," Carbon, Vol. 66, pp. 334-339, 2014. [DOI:10.1016/j.carbon.2013.09.008]
32. A. Mehta, E.J. Nelson, S.M. Webb, and J.K. Holt, "The interaction of bromide ions with graphitic materials," Adv. Mater. Vol. 21, pp. 102-106, 2009. [DOI:10.1002/adma.200801602]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb