Volume 14, Issue 1 (Winter-Spring 2020)                   IJOP 2020, 14(1): 91-98 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadinouri F, Hosseini M, Sarreshtedari F. Full Quantum Analysis of Complete Population Transfer Using Frequency Boost. IJOP. 2020; 14 (1) :91-98
URL: http://ijop.ir/article-1-404-en.html
1- Department of physics, Shiraz University of Technology, Shiraz, Iran
2- Department of Physics, University of Tehran, Tehran, Iran
Abstract:   (93 Views)
In this paper, we have proposed and demonstrated a new method of atomic population transfer. The transition dynamic of a two-level system is studied in a full quantum description of the Jaynes-Cummings model. Solving the time-dependent Schrödinger equation, we have investigated the transition probabilities numerically and analytically by using a sudden boost of the laser frequency. The results show that complete population transfer can be achieved by adjusting the time of the frequency boost.
Full-Text [PDF 396 kb]   (39 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/02/24 | Revised: 2020/10/27 | Accepted: 2020/10/14 | Published: 2020/10/25

References
1. Y.-X. Du, X.-X. Yue, Z.-T. Liang, J.-Z. Li, H. Yan, and S.-L. Zhu, "Geometric atom interferometry with shortcuts to adiabaticity," Phys. Rev. A, Vol. 95, pp. 043608 (1-6), 2017. [DOI:10.1103/PhysRevA.95.043608]
2. V.I. Yudin, A.V. Taichenachev, M.Y. Basalaev, and D.V. Kovalenko, "Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks," Opt. Express, Vol. 25, pp. 2742 (1-10), 2017. [DOI:10.1364/OE.25.002742]
3. T. Theis, Y. Feng, T. Wu, and W.S. Warren, "Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance," J. Chem. Phys. Vol. 140, pp. 014201 (1-7), 2014. [DOI:10.1063/1.4851337]
4. M. Saffman, T.G. Walker, and K. Mølmer, "Quantum information with Rydberg atoms," Rev. Mod. Phys. Vol. 82, pp. 2313-2363, 2010. [DOI:10.1103/RevModPhys.82.2313]
5. F. Ahmadinouri, M. Hosseini, and F. Sarreshtedari, "Investigation of population transfer by sweeping the laser field in a finite time interval," Optik, Vol. 181, pp. 404-407, 2019. [DOI:10.1016/j.ijleo.2018.12.039]
6. G. P. Djotyan, J. S. Bakos, Zs. Sörlei, and J. Szigeti, "Coherent control of atomic quantum states by single frequency-chirped laser pulses," Phys. Rev. Vol. 70, pp. 063406 (1-7), 2004. [DOI:10.1103/PhysRevA.70.063406]
7. F. Sarreshtedari and M. Hosseini, "Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings," Phys. Rev. A, Vol. 95, pp. 033834 (1-6), 2017. [DOI:10.1103/PhysRevA.95.033834]
8. F. Ahmadinouri, M. Hosseini, and F. Sarreshtedari, "Investigation of robust population transfer using quadratically chirped laser interacting with a two-level system," Phys. Scr. Vol. 94, pp. 105404 (1-18), 2019. [DOI:10.1088/1402-4896/ab254d]
9. F. Ahmadinouri, M. Hosseini, and F. Sarreshtedari, "Robust population transfer in a two-level system using finite chirping method," Phys. Scr. Vol. 94, pp. 085404 (1-13), 2019. [DOI:10.1088/1402-4896/ab1689]
10. F. Ahmadinouri, M. Hosseini, and F. Sarreshtedari, "Stimulated Raman adiabatic passage: effect of system parameters on population transfer," ArXiv 190200884 (1-22), 2019.
11. N.V. Vitanov, A.A. Rangelov, B.W. Shore, and K. Bergmann, "Stimulated Raman adiabatic passage in physics, chemistry, and beyond," Rev. Mod. Phys. Vol. 89, pp. 015006 (1-78), 2017. [DOI:10.1103/RevModPhys.89.015006]
12. M. Hosseini and F. Sarreshtedari, "Investigation of the laser controlled Landau-Zener mechanism in a coupled quantum system," J. Opt. Soc. Am. B Vol. 34, pp. 2097-2103, 2017. [DOI:10.1364/JOSAB.34.002097]
13. M. Wubs, K. Saito, S. Kohler, Y. Kayanuma, and P. Hanggi, "Landau-Zener transitions in qubits controlled by electromagnetic fields," New J. Phys. Vol. 7, pp. 218-218, 2005. [DOI:10.1088/1367-2630/7/1/218]
14. H.T. Dung, R. Tanaś, and A.S. Shumovsky, "Collapses, revivals, and phase properties of the field in Jaynes-Cummings type models," Opt. Commun. Vol. 79, pp. 462-468, 1990. [DOI:10.1016/0030-4018(90)90483-A]
15. R.R. Schlicher, "Jaynes-Cummings model with atomic motion,"Opt. Commun. Vol. 70, pp. 97-102, 1989. [DOI:10.1016/0030-4018(89)90276-9]
16. B.W. Shore and P.L. Knight, "The jaynes-cummings model," J. Mod. Opt. Vol. 40, pp. 1195 (1-4), 1993. [DOI:10.1080/09500349314551321]
17. F. Bloch, "Nuclear induction," Phys. Rev. Vol. 70, pp. 460-474, 1946. [DOI:10.1103/PhysRev.70.460]
18. I.I. Rabi, "Space quantization in a gyrating magnetic field," Phys. Rev. Vol. 51, pp. 652-655, 1937. [DOI:10.1103/PhysRev.51.652]
19. E.T. Jaynes and F.W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE, Vol. 51, pp. 89-109, 1963. [DOI:10.1109/PROC.1963.1664]
20. H. Walther, B.T.H. Varcoe, B.-G. Englert, and T. Becker, "Cavity quantum electrodynamics," Rep. Prog. Phys. Vol. 69, pp. 1325 (1-59), 2006. [DOI:10.1088/0034-4885/69/5/R02]
21. C.-G. Liao, C. Hu, Z.-K. Su, and S.-W. Chen, "The Collapse and Revival of Bell-nonlocaliy for Continuous Variables," Int. J. Theor. Phys. Vol. 54, pp. 1408-1416, 2015. [DOI:10.1007/s10773-014-2339-7]
22. R. Pakniat, M.K. Tavassoly, and M.H. Zandi, "Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model,"Commun. Theor. Phys. Vol. 65, pp. 266-272, 2016. [DOI:10.1088/0253-6102/65/3/266]
23. P. Meystre and M.S. Zubairy, "Squeezed states in the Jaynes-Cummings model," Phys. Lett. A Vol. 89, pp. 390-392, 1982. [DOI:10.1016/0375-9601(82)90330-9]
24. J. Wang, H. Fang, and X. Xu, "Two-photon Jaynes-Cummings model interacting with the squeezed vacuum state solved by dressed-state method," Optik, Vol. 169, pp. 180-189, 2018. [DOI:10.1016/j.ijleo.2018.05.057]
25. H.-M. Zou and M.-F. Fang, "Squeezing of light field in a dissipative Jaynes-Cummings model," J. Mod. Opt. Vol. 63, pp. 2279-2284, 2016. [DOI:10.1080/09500340.2016.1197334]
26. A. Abragam, The Principles of Nuclear Magnetism, Oxford university press, 1961. [DOI:10.1119/1.1937646]
27. A. Capua, C. Rettne r, S.-H. Yang, T. Phung, and S. S. P. Parkin, "Ensemble-averaged Rabi oscillations in a ferromagnetic CoFeB film," Nat. Commun. Vol. 8, pp. 16004 (1-7), 2017. [DOI:10.1038/ncomms16004]
28. T. Suzuki, R. Singh, M. Bayer, A. Ludwig, A. D. Wieck, and S. T. Cundiff, "Detuning dependence of Rabi oscillations in an InAs self-assembled quantum dot ensemble," Phys. Rev. B Vol. 97, pp. 161301 (1-7), 2018. [DOI:10.1103/PhysRevB.97.161301]
29. Y.-Z. Xue, Z.-S. Chen, H.-Q. Ni, Z.-C. Niu, D.-S. Jiang, X.-M. Dou, and B.-Q. Sun, Chin. "Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm," Phys. B Vol. 26, pp. 084202 (1-4), 2017. [DOI:10.1088/1674-1056/26/8/084202]
30. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, "Quantum dynamics of single trapped ions," Rev. Mod. Phys. Vol. 75, pp. 281-324, 2003. [DOI:10.1103/RevModPhys.75.281]
31. R. Puebla, J. Casanova, and M.B. Plenio, "A robust scheme for the implementation of the quantum Rabi model in trapped ions," New J. Phys. Vol. 18, pp. 113039 (1-21), 2016. [DOI:10.1088/1367-2630/18/11/113039]
32. K.R. Patton and U.R. Fischer, "Hybrid of superconducting quantum interference device and atomic Bose-Einstein condensate: An architecture for quantum information processing," Phys. Rev. A, Vol. 87, pp. 052303 (1-9), 2013. [DOI:10.1103/PhysRevA.87.052303]
33. F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. Vol. 74, pp. 895-950, 2002. [DOI:10.1103/RevModPhys.74.895]
34. P. Törmä and W.L. Barnes, "Strong coupling between surface plasmon polaritons and emitters: a review," Rep. Prog. Phys. Vol. 78, pp. 013901 (1-35), 2015. [DOI:10.1088/0034-4885/78/1/013901]
35. Y.A. Kosevich and J. Micromechanics "Non-linear mechanical analogue of quantum Rabi oscillations in coherent output coupler for atoms in Bose-Einstein condensate," Mol. Phys. Vol. 01, pp. 1650007, 2016. [DOI:10.1142/S2424913016500077]
36. D.A. Golter and H. Wang, "Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond," Phys. Rev. Lett. Vol. 112, pp. 116403-. 116407, 2014. [DOI:10.1103/PhysRevLett.112.116403]
37. J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, "Rabi oscillations in a large Josephson-junction qubit," Phys. Rev. Lett. Vol. 89, pp. 117901 (1-4), 2002. [DOI:10.1103/PhysRevLett.89.117901]
38. D. Suter, The physics of laser-atom interactions, Cambridge University Press, Cambridge, 1997. [DOI:10.1017/CBO9780511524172]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb