International Journal of Optics and Photonics (IJOP) Vol 14, No 1, Winter-Spring                   Back to the articles list | Back to browse issues page

XML Print

1- yazd University
2- Yazd University
3- SDU
4- Southern Denmark University
Abstract:   (109 Views)
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. It is demonstrated that ultra-thin C70 films can effectively block holes and thus become selective to the transport of electrons in PSC devices.
Full-Text [PDF 276 kb]   (45 Downloads)    
Type of Study: Research | Subject: General
Received: 2019/08/31 | Revised: 2020/09/19 | Accepted: 2020/08/25 | Published: 2020/08/25

1. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, Vol. 342, pp. 341-344, 2013. [DOI:10.1126/science.1243982]
2. P.-W. Liang, C.-C. Chueh, S.T. Williams, and A.K.Y. Jen, "Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells," Adv. Energy Mater. Vol. 5, pp. 1402321 (1-7), 2015. [DOI:10.1002/aenm.201402321]
3. W. Ke, D. Zhao, C.R. Grice, A.J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang, and Y. Yan, "Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers," ‎J. Mater. Chem. A, Vol. 3, pp. 17971-17976, 2015. [DOI:10.1039/C5TA04313A]
4. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, and P. Meredith, "Electro-optics of perovskite solar cells," Nat Photon, Vol. 9, pp. 106-112, 2015. [DOI:10.1038/nphoton.2014.284]
5. C. Wang, X. Liu, C. Wang, Z. Xiao, C. Bi, Y. Shao, J. Huang, and Y. Gao, "Surface analytical investigation on organometal triiodide perovskite," J. Vac. Sci. Technol, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 33, pp. 032401 (1-7), 2015. [DOI:10.1116/1.4915499]
6. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, and Y.M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy Environ. Sci. Vol. 7, pp. 399-407, 2014. [DOI:10.1039/C3EE43161D]
7. H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N.P. Padture, and G. Cui, "Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells," RSC Adv. Vol. 4, pp. 28964-28967, 2014. [DOI:10.1039/C4RA03820G]
8. Z. Zhou, S. Pang, Z. Liu, H. Xu, and G. Cui, "Interface engineering for high-performance perovskite hybrid solar cells," J. Mater. Chem. A, Vol. 3, pp. 19205-19217, 2015. [DOI:10.1039/C5TA04340A]
9. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc, Vol. 131, pp. 6050-6051, 2009. [DOI:10.1021/ja809598r]
10. L. Meng, J. You, and Y. Yang, "Addressing the stability issue of perovskite solar cells for commercial applications," Nat. Commun, Vol. 9, pp. 5265 (1-4), 2018. [DOI:10.1038/s41467-018-07255-1]
11. C.-H. Chiang, Z.-L. Tseng, and C.-G. Wu, "Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process," J. Mater. Chem. A, Vol. 2, pp. 15897-15903, 2014. [DOI:10.1039/C4TA03674C]
12. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, and R.P.H. Chang, "Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells," Energy Environ. Sci. Vol. 9, pp. 3071-3078, 2016. [DOI:10.1039/C6EE02139E]
13. P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, and H.J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nat. Commun. Vol. 4, pp. 2761 (1-6), 2013. [DOI:10.1038/ncomms3761]
14. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency," Energy Environ. Sci. Vol. 8, pp. 1602-1608, 2015. [DOI:10.1039/C5EE00120J]
15. L. Meng, J. You, T.-F. Guo, and Y. Yang, "Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells," Acc. Chem. Res. Vol. 49, pp. 155-165, 2016. [DOI:10.1021/acs.accounts.5b00404]
16. L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, and H. Chen, "Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer," J. Mater. Chem. C, Vol. 2, pp. 9087-9090, 2014. [DOI:10.1039/C4TC01875C]
17. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, and H.J. Bolink, "Perovskite solar cells employing organic charge-transport layers," Nat. Photon. Vol. 8, pp. 128-132, 2014. [DOI:10.1038/nphoton.2013.341]
18. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells," Nat. Commun. Vol. 5, pp. 5784 (1-7), 2014. [DOI:10.1038/ncomms6784]
19. F. Jafari, B.R. Patil, F. Mohtaram, A.L.F. Cauduro, H.-G. Rubahn, A. Behjat, and M. Madsen, "Inverted organic solar cells with non-clustering bathocuproine (BCP) cathode interlayers obtained by fullerene doping," Sci. Rep. Vol. 9, pp. 10422 (1-9), 2019. [DOI:10.1038/s41598-019-46854-w]
20. G. Sherafatipour, J. Benduhn, B.R. Patil, M. Ahmadpour, D. Spoltore, H.-G. Rubahn, K. Vandewal, and M. Madsen, "Degradation pathways in standard and inverted DBP-C70 based organic solar cells," Sci. Rep. Vol. 9, pp. 4024 (1-12), 2019. [DOI:10.1038/s41598-019-40541-6]
21. B.R. Patil, Y. Liu, T. Qamar, H.-G. Rubahn, and M. Madsen, "4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C 70 based organic solar cells," J. Phys. D, Vol. 50, pp. 385101 (1-9), 2017. [DOI:10.1088/1361-6463/aa7f1c]
22. M. Ahmadpour, Y. Liu, H. Rubahn, and M. Madsen, "Current Matching in Multifold DBP/C70 Organic Solar Cells With Open-Circuit Voltages of up to 6.44 V," IEEE J. Photovoltaics, Vol. 7, pp. 1319-1323, 2017. [DOI:10.1109/JPHOTOV.2017.2713405]
23. B.R. Patil, M. Ahmadpour, G. Sherafatipour, T. Qamar, A.F. Fernández, K. Zojer, H.-G. Rubahn, and M. Madsen, "Area dependent behavior of bathocuproine (BCP) as cathode interfacial layers in organic photovoltaic cells," Sci. Rep. Vol. 8, pp. 12608 (1-9), 2018. [DOI:10.1038/s41598-018-30826-7]
24. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells," Adv. Mater. Vol. 25, pp. 3727-3732, 2013. [DOI:10.1002/adma.201301327]
25. R. Singhal, R. Vishnoi, M.K. Banerjee, R. Kaushik, K.V. Kamma, G.B.V.S. Lakshmi, A. Tripathi, and D.K. Avasthi, "Surface and structural studies of fullerene C70 under ion irradiation AU - Sharma, P," Surface Eng. Vol. 32, pp. 846-852, 2016. [DOI:10.1080/02670844.2016.1185838]
26. X. Lin, J. Seok, S. Yoon, T. Kim, B. Kim, and K. Kim, "Morphological investigation of P3HT/PCBM heterojunction and its effects on the performance of bilayer organic solar cells," Synth. Met. Vol. 196, pp. 145-150, 2014. [DOI:10.1016/j.synthmet.2014.07.008]
27. M.V. Khenkin, K.M. Anoop, I. Visoly-Fisher, Y. Galagan, F. Di Giacomo, B.R. Patil, G. Sherafatipour, V. Turkovic, H.-G. Rubahn, M. Madsen, T. Merckx, G. Uytterhoeven, J.P.A. Bastos, T. Aernouts, F. Brunetti, M. Lira-Cantu, and E.A. Katz, "Reconsidering figures of merit for performance and stability of perovskite photovoltaics," Energy Environ. Sci. Vol. 11, pp. 739-743, 2018. [DOI:10.1039/C7EE02956J]
28. M.V. Khenkin, K.M. Anoop, I. Visoly-Fisher, S. Kolusheva, Y. Galagan, F. Di Giacomo, O. Vukovic, B.R. Patil, G. Sherafatipour, V. Turkovic, H.-G. Rubahn, M. Madsen, A.V. Mazanik, and E.A. Katz, "Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes," ACS Appl. Energy Mat. Vol. 1, pp. 799-806, 2018. [DOI:10.1021/acsaem.7b00256]
29. X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang, and R. Yang, "Efficient planar perovskite solar cells with large fill factor and excellent stability," J. Power Sources, Vol. 297, pp. 53-58, 2015. [DOI:10.1016/j.jpowsour.2015.07.081]
30. J. Xiong, B. Yang, R. Wu, C. Cao, Y. Huang, C. Liu, Z. Hu, H. Huang, Y. Gao, and J. Yang, "Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells," Org. Electron. Vol. 24, pp. 106-112, 2015. [DOI:10.1016/j.orgel.2015.05.028]
31. L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, and Y. Zhu, "Multi-step slow annealing perovskite films for high performance planar perovskite solar cells," Sol. Energy Mater. Sol. Cells, Vol. 141, pp. 377-382, 2015. [DOI:10.1016/j.solmat.2015.06.018]
32. N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, "Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide," J. Am. Chem. Soc. Vol. 137, pp. 8696-8699, 2015. [DOI:10.1021/jacs.5b04930]
33. X. Xi, W. Li, J. Wu, J. Ji, Z. Shi, and G. Li, "A comparative study on the performances of small molecule organic solar cells based on CuPc/C60 and CuPc/C70," Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 2435-2441, 2010. [DOI:10.1016/j.solmat.2010.08.008]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb