Volume 14, Issue 1 (Winter-Spring 2020)                   IJOP 2020, 14(1): 99-106 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mombeiny Godazhdar R, Amooghorban E, Mahdifar A. The Entanglement of a Two-Atomic System in the Presence of a Silver Nanosphere. IJOP. 2020; 14 (1) :99-106
URL: http://ijop.ir/article-1-388-en.html
1- Department of Physics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
2- Department of Physics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran, Photonics Research Group, Shahrekord University, Shahrekord, Iran, Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
3- Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, Isfahan, Iran, Quantum Optics Group, Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, Isfahan, Iran
Abstract:   (116 Views)
In this paper, we study the entanglement of two-level atoms near a spherical silver nanoparticle. By employing the Von Neumann equation and utilizing of the electromagnetic Green’s tensor associated with a dispersive and dissipative dielectric sphere, the decay rates and the Lamb shift of the atomic system are obtained. Then, by using the concurrence measure, we calculate the degree of entanglement of the atomic system. We observe that the decay rates severely increase near the excitation frequency of the localized plasmon-polariton, while the concurrence value is nearly zero.
 
 
Full-Text [PDF 354 kb]   (56 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/07/12 | Revised: 2019/11/15 | Accepted: 2020/01/16 | Published: 2020/09/10

References
1. C.H. Bennett and S.J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. Vol. 69, pp 2881-2884, 1992. [DOI:10.1103/PhysRevLett.69.2881]
2. E. Boukobza and D. Tannor, "Entropy exchange and entanglement in the Jaynes-Cummings model," Phys. Rev. A, Vol. 71, pp. 063821 (1-8), 2005. [DOI:10.1103/PhysRevA.71.063821]
3. W.K. Wootters, "Entanglement of Formation of an Arbitrary State of Two Qubits," Phys. Rev. Lett. Vol. 80, pp. 2245-2248, 1998. [DOI:10.1103/PhysRevLett.80.2245]
4. B. Huttner and S.M. Barnett, "Quantization of the electromagnetic field in dielectrics," Phys. Rev. A, Vol. 46, pp 4306-4322, 1992. [DOI:10.1103/PhysRevA.46.4306]
5. J. Jeffers, S.M. Barnett, R. Loudon, R. Matloob, and M. Artoni, "Canonical quantum theory of light propagation in amplifying media," Opt. Commun. Vol. 131, pp. 66-71, 1996. [DOI:10.1016/0030-4018(96)00329-X]
6. L.G. Suttorp and M. Wubs, "Field quantization in inhomogeneous absorptive dielectrics," Phys. Rev. A, Vol. 70, pp. 013816 (1-18), 2004. [DOI:10.1103/PhysRevA.70.013816]
7. M. Amooshahi, "Canonical quantization of electromagnetic field in an anisotropic polarizable and magnetizable medium," J. Math. Phys. Vol. 50, pp. 062301(1-22), 2009. [DOI:10.1063/1.3142963]
8. F. Kheirandish and E. Amooghorban, "Finite-temperature Cherenkov radiation in the presence of a magnetodielectric medium," Phys. Rev. A, Vol. 82, pp. 042901(1-14), 2010. [DOI:10.1103/PhysRevA.82.042901]
9. F. Kheirandish, E. Amooghorban, and M. Soltani, "Finite-temperature Casimir effect in the presence of nonlinear dielectrics," Phys. Rev. A, Vol. 83, pp. 032507 (1-10), 2011. [DOI:10.1103/PhysRevA.83.032507]
10. E. Amooghorban, M. Wubs, N.A. Mortensen, and F. Kheirandish, "Casimir forces in multilayer magnetodielectrics with both gain and loss," Phys. Rev. A, Vol. 84, pp. 013806 (1-15), 2011. [DOI:10.1103/PhysRevA.84.013806]
11. R. Matloob, R. Loudon, S.M. Barnett, and J. Jeffers, "Electromagnetic field quantization in absorbing dielectrics," Phys. Rev. A, Vol. 52, pp. 4823-4838, 1995. [DOI:10.1103/PhysRevA.52.4823]
12. L. Knöll, S. Scheel, and D.-G.Welsch, Coherence and Statistics of Photons and Atoms, Wiley New York, 2001.
13. R. Matloob, "Electromagnetic field quantization in a linear isotropic permeable dielectric medium," Phys. Rev. A, Vol. 70, pp. 022108 (1-9), 2004. [DOI:10.1103/PhysRevA.70.022108]
14. E. Amooghorban and E. Aleebrahim, "Entanglement dynamics of two two-level atoms in the vicinity of an invisibility cloak," Phys. Rev. A, Vol. 96, pp. 012339 (1-11) 2017. [DOI:10.1103/PhysRevA.96.012339]
15. S.A. Biehs and G.S. Agarwal, "Qubit entanglement across ε-near-zero media," Phys. Rev. A, Vol. 96, pp. 022308 (1-9), 2017. [DOI:10.1103/PhysRevA.96.022308]
16. Z. Ficek, R. Tanas, and S.Kielich, "Quantum beats and superradiant effects in the spontaneous emission from two nonidentical atoms," Physica. A, Vol. 146, pp. 452-482 1987. [DOI:10.1016/0378-4371(87)90280-9]
17. L. Li, P. Kooi, M. Leong, and T. Yeo, "Electromagnetic dyadic Green's function in spherically multilayered media," IEEE Trans. Microwave Theory Tech. Vol. 42, pp. 2302-2310, 1994. [DOI:10.1109/22.339756]
18. C. van Vlack and P. Hughes, "Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system," Phys. Rev. B, Vol. 85, pp. 075303 (227-241), 2012. [DOI:10.1103/PhysRevB.85.075303]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb