Volume 14, Issue 1 (Winter-Spring 2020)                   IJOP 2020, 14(1): 3-14 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moshfe S, Moravvej-Farshi M K, Abedi K. Designing an Integrated All-Optical Analog to Digital Converter. IJOP. 2020; 14 (1) :3-14
URL: http://ijop.ir/article-1-385-en.html
1- Department of Electrical Engineering, Science and research branch, Islamic Azad University, Tehran, Iran
2- Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
3- Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
Abstract:   (422 Views)
We present the procedure for designing a high speed and low power all-optical analog to digital converter (AO-ADC), by integrating InGaAsP semiconductor optical amplifier (SOA) with InP based photonic crystal (PhC) drop filters. The self-phase modulation in the SOA can shift the frequency of the Gaussian input pulse. The two output PhC based drop filters are designed to appropriately code the frequency-shifted analog signals by the SOA, converting them to four desired digital output levels. Our numerical results show that in an appropriately designed AO-ADC, the center wavelength (1572 nm) of an amplitude modulated Gaussian pulse of 1.8 ps width and 1.56 pJ energy can be shifted by 6.7 nm, by the SOA, and then be quantized and coded to four digital levels (00, 01, 10, and 11). The two point-defect PhC drop filters, compensating the effect of the frequency shift by SOA, minimize the AO-ADC integral and differential nonlinearity errors.
Full-Text [PDF 467 kb]   (182 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2019/06/16 | Revised: 2019/10/2 | Accepted: 2019/11/2 | Published: 2020/09/10

1. H. F. Taylor, H. F. M. J. Taylor, and P. W. Bauer, "Electro-optic analog-to-digital conversion using channel waveguide modulators," Appl. Phys. Lett. Vol. 32, pp. 559-561, 1978. [DOI:10.1063/1.90129]
2. L. Y. Nathawad, R. Urata, B. A. Wooley, and D. A. B. Miller, "A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling," IEEE J. Solid-State Circuits, Vol. 38, pp. 2021-2030, 2003. [DOI:10.1109/JSSC.2003.819172]
3. S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, "Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution," Appl. Opt. Vol. 48, pp. 4458-4467, 2009. [DOI:10.1364/AO.48.004458]
4. J.-M. Jeong and M. E. Marhic, "All-optical analog-to-digital conversion implemented by a nonlinear fiber interferometer," Opt. Commun. Vol. 91, pp. 115-122, 1992. [DOI:10.1016/0030-4018(92)90112-5]
5. L. Brozozowski and E. H. Sargent, "All-optical analog-to-digital converters, hard limiters, and logic gates," J. Lightw. Technol. Vol. 19, pp. 114-119, 2001. [DOI:10.1109/50.914492]
6. Ch. Xu and Xi. Liu, "Photonic analog-to-digital converter using Soliton self-frequency shift and interleaving spectral filters," Opt. Lett. Vol. 28, pp. 986-988, 2003. [DOI:10.1364/OL.28.000986]
7. T. Nishitani, T. Konishi, and K. Itoh, "Integration of proposed all-optical analog-to-digital converter using self-frequency shifting in fiber and a pulse-shaping technique," Opt. Rev. Vol. 12, pp. 237-241, 2005. [DOI:10.1007/s10043-005-0237-1]
8. Sh-i. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photon. Technol. Lett. Vol. 17, pp. 465-467, 2005. [DOI:10.1109/LPT.2004.839397]
9. Sh. Oda and A. Maruta, "Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by Soliton effects on self-phase modulation in fiber," IEEE J. Sel. Top. Quantum Electron. Vol. 12, pp. 307-314, 2006. [DOI:10.1109/JSTQE.2006.872726]
10. T. Nishitani, T. Konishi, and K. Itoh, "Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation induced spectral compression," IEEE J. Sel. Top. Quantum Electron. Vol. 14, pp. 724-732, 2008. [DOI:10.1109/JSTQE.2008.916251]
11. T. Konishi, K. Takahashi, H. Matsui, T. Satoh, and K. Itoh, "Five-bit parallel operation of optical quantization and coding for photonic analog-to-digital conversion," Opt. Exp. Vol. 19, pp. 16106-16114, 2011. [DOI:10.1364/OE.19.016106]
12. K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, and Y. Chong-Xiu, "Six-bit all optical quantization using photonic crystal fiber with pre-chirped spectral compression techniques," Chin. Phys. Vol. B 22, pp. 114211 (1-5), 2013. [DOI:10.1088/1674-1056/22/11/114211]
13. T. Nagashima, M. Hasegawa, and T. Konishi, "40GSampl/s all-optical analog to digital with resolution degradation prevention," IEEE Photon. Technol. Lett. Vol. 29, pp. 74-77, 2017. [DOI:10.1109/LPT.2016.2628868]
14. M. Scaffardi, E, Lazzeri, F. Fresi, L. Poti L, and A. Bogoni. "Analog-to-Digital Conversion based on Modular Blocks Exploiting Cross-gain Modulation in Semiconductor Amplifiers," IEEE Photon. Technol. Lett. Vol. 21, pp. 540-542, 2009. [DOI:10.1109/LPT.2009.2014472]
15. H. Wen, H. Wang, and Y. Ji, "All-optical quantization and coding scheme for ultra-fast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers," Opt. Commun. Vol. 285, pp. 3877-3885, 2012. [DOI:10.1016/j.optcom.2012.05.038]
16. H. Hoshino, T. Okada, and M. Matsuura, "Photonic analog-to-digital conversion using a red frequency chirp in a semiconductor optical amplifier," Opt. Lett. Vol. 43, pp. 2272-2275, 2018. [DOI:10.1364/OL.43.002272]
17. B. Yousefi, M. K. Moravvej-Farshi, and N. Granpayeh, "Two-bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals," Opt. Commun. Vol. 285, pp. 3228-3223, 2012. [DOI:10.1016/j.optcom.2012.02.081]
18. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, "All Optical 2-bit Analog to Digital Converter Using Photonic Crystal Based Cavities," Opt. Quantum Electron. Vol. 49, pp. 1-11, 2017. [DOI:10.1007/s11082-016-0880-8]
19. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, "A novel proposal for all optical analog-to-digital converter based on photonic crystal structures," IEEE Photon. J. Vol. 9, pp. 4700311 (1-12), 2017. [DOI:10.1109/JPHOT.2017.2690362]
20. D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian "All-Optical Analog-to-Digital Converter based on Kerr Effect in Photonic Crystal," Opt. Laser Technol. Vol. 101, pp. 138-143, 2018. [DOI:10.1016/j.optlastec.2017.11.007]
21. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. Vol. 25, pp. 2297-2306, 1989. [DOI:10.1109/3.42059]
22. P. P. Baveja, D. N. Maywar, A. M. Kaplan, and G. P. Agrawal, "Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation," Opt. Lett. Vol. 35, 294-296 2010. [DOI:10.1364/OL.35.000294]
23. M. Razaghi, V. Ahmadi, and M. J. Connely, "Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier," J. Lightw. Technol. Vol. 27, pp. 3162-3174, 2009. [DOI:10.1109/JLT.2008.2008823]
24. M. J. Connely, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. Vol. 37, pp. 349-447, 2001. [DOI:10.1109/3.910455]
25. P. Baveja, D. N. Maywar, and G. P. Agrawal. "Interband Four-Wave Mixing in Semiconductor Optical Amplifiers with ASE-Enhanced Gain Recovery," IEEE J. Selec. Topics Quantum Electron. Vol. 18, pp. 899-908, 2012. [DOI:10.1109/JSTQE.2011.2136372]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb