Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 155-170 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biabani S, Foroutan G. Energy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures. IJOP 2019; 13 (2) :155-170
URL: http://ijop.ir/article-1-382-en.html
1- Department of Physics, Sahand University of Technology
Abstract:   (4325 Views)
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , dissociation via quenching of metastable states of , as well as,  quenching by nitrogen molecules. Among the electronically excited metastable states,  are the most important species. Slow heating of the gas above 1 is attributed to the vibrational relaxation processes of , among them vibrational-translational relaxation of demonstrates the highest heating rate. The heating rate and thus the gas temperature are significantly increased with increasing of the microwave pulse amplitude, pulse width, and the gas pressure. In all cases, enhanced  dissociation is the main factor behind the enhanced gas heating. The same effects are observed for increasing of the initial gas temperature, and percentage in a  mixture.
Full-Text [PDF 1200 kb]   (2591 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/04/23 | Revised: 2019/05/19 | Accepted: 2019/05/22 | Published: 2019/12/27

References
1. A.D. MacDonald, Microwave Breakdown in Gases (John Wiley & Sons), New York, 1966.
2. D. Anderson, M. Lisak, and T. Lewin, "Breakdown in air-filled microwave waveguides during pulsed operation," J. Appl. Phys. Vol. 56, pp. 1414-1419, 1984. [DOI:10.1063/1.334140]
3. D. Knight, "Survey of Aerodynamic Drag Reduction at High Speed by Energy Deposition," J. Propul. Power, Vol. 24, pp. 1153-1167, 2008. [DOI:10.2514/1.24595]
4. K.V. Khodataev, "Microwave Discharges and Possible Applications in Aerospace Technologies," J. Propul. Power, Vol. 24, pp. 962-972, 2008. [DOI:10.2514/1.24409]
5. K.V. Aleksandrov, V.L. Bychkov, I.I. Esakov, L.P. Grachev, K.V. Khodataev, A.A. Ravaev, and I.B. Matveev, "Investigations of Subcritical Streamer Microwave Discharge in Reverse-Vortex Combustion Chamber," IEEE Trans. Plasma Sci. Vol. 37, pp. 2293-2297, 2009. [DOI:10.1109/TPS.2009.2026175]
6. S. Takamura, S. Amano, T. Kurata, H. Kasada, J. Yamamoto, M.A. Razzak, G. Kushida, N. Ohno, and M. Kando, "Formation and decay processes of Ar/He microwave plasma jet at atmospheric gas pressure," J. Appl. Phys. Vol. 110, pp. 043301 (1-8), 2011. [DOI:10.1063/1.3622302]
7. J.T. Krile, A.A. Neuber, H.G. Krompholz, and T. L. Gibson, "Monte Carlo simulation of high power microwave window breakdown at atmospheric conditions," Appl. Phys. Lett. Vol. 89, pp. 201501 (1-3), 2006. [DOI:10.1063/1.2388877]
8. S.P. Kuo, Y.S. Zhang, M.C. Lee, P. Kossey, and R.J. Barker, "Laboratory chamber experiments exploring the potential use of artificially ionized layers of gas as a Bragg reflector for over-the-horizon signals," Radio Sci. Vol. 27, pp. 851-865, 1992. [DOI:10.1029/92RS00965]
9. M. Baeva, H. Gier, A. Pott, J. Uhlenbusch, J. Hoschele, and J. Steinwandel, "Pulsed microwave discharge at atmospheric pressure for decomposition," Plasma Sources Sci. Technol. Vol. 11, pp. 1-9, 2002. [DOI:10.1088/0963-0252/11/1/301]
10. A.V. Gurevich, N.D. Borisov, and G.M. Milikh, Physics of Microwave Discharge: Artificially Ionized Regions in the Atmosphere (Gordon and Breach Science Publishers), The Netherlands, 1997.
11. A.V. Gurevich, A.G. Litvak, A.L. Vikharev, O.A. Ivanov, N.D. Borisov, and K.F. Sergeichev, "Artificially ionized region as a source of ozone in the stratosphere," Phys.-Uspekhi Vol. 43, pp. 1103-1123, 2000. [DOI:10.1070/PU2000v043n11ABEH000684]
12. A.L. Vikharev, O.A. Ivanov, and A.G. Litvak, "Nonequilibrium Plasma Produced by microwave Nanosecond Radiation: Parameters, Kinetics, and Practical Applications," IEEE Trans. Plasma Sci. Vol. 24, pp. 460-477, 1996. [DOI:10.1109/27.510012]
13. J.H. Yee, R.A. Alvarez, D.J. Mayhall, D.P. Byrne, and J. Degroot, "Theory of intense electromagnetic pulse propagation through the atmosphere," Phys. Fluids, Vol. 29, pp. 1238-1244, 1986. [DOI:10.1063/1.865872]
14. J.H. Yee, D.J. Mayhall, G.E. Sieger, and R.A. Alvarez, "Propagation of Intense Microwave Pulses in Air and in a Waveguide," IEEE Trans. Antennas Propag. Vol. 39, pp. 1421-1427, 1991. [DOI:10.1109/8.99053]
15. Y. Hidaka, E.M. Choi, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, "Observation of Large Arrays of Plasma Filaments in Air Breakdown by 1.5-MW 110-GHz Gyrotron Pulses," Phys. Rev. Lett. Vol. 100, pp. 035003 (1-4), 2008. [DOI:10.1103/PhysRevLett.100.035003]
16. S.K. Nam and J.P. Verboncoeur, "Theory of Filamentary Plasma Array Formation in Microwave Breakdown at Near-Atmospheric Pressure," Phys. Rev. Lett. Vol. 103, pp. 055004 (1-4), 2009. [DOI:10.1103/PhysRevLett.103.055004]
17. J.P. Boeuf, B. Chaudhury, and G.Q. Zhu, "Theory and Modeling of Self-Organization and Propagation of Filamentary Plasma Arrays in Microwave Breakdown at Atmospheric Pressure," Phys. Rev. Lett. Vol. 104, pp. 015002 (1-4), 2010. [DOI:10.1103/PhysRevLett.104.015002]
18. B. Chaudhury and J.P. Boeuf, "Computational Studies of Filamentary Pattern Formation in a High Power Microwave Breakdown Generated Air Plasma," IEEE Trans. Plasma Sci. Vol. 38, pp. 2281-2288, 2010. [DOI:10.1109/TPS.2010.2055893]
19. B. Chaudhury, J.P. Boeuf, and G.Q. Zhu, "Pattern formation and propagation during microwave breakdown," Phys. Plasmas, Vol. 17, pp. 123505 (1-11), 2010. [DOI:10.1063/1.3517177]
20. B. Chaudhury, J.P. Boeuf, and G.Q. Zhu, and O. Pascal, "Physics and modelling of microwave streamers at atmospheric pressure," J. Appl. Phys. Vol. 110, pp. 113306 (1-8), 2011. [DOI:10.1063/1.3665202]
21. A. Cook, M. Shapiro, and R. Temkin, "Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz," Appl. Phys. Lett. Vol. 97, pp. 011504 (1-3), 2010. [DOI:10.1063/1.3462320]
22. A.M. Cook, J.S. Hummelt, M.A. Shapiro, and R.J. Temkin, "Observation of plasma array dynamics in 110 GHz millimeter-wave air breakdown," Phys. Plasmas, Vol. 18, pp. 100704 (1-4), 2011. [DOI:10.1063/1.3656980]
23. K. Kourtzanidis, J.P. Boeuf, and F. Rogier, "Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air," Phys. Plasmas, Vol. 21, pp. 123513 (1-8), 2014. [DOI:10.1063/1.4905071]
24. D.Z. Pai, D.A. Lacoste, and C.O. Laux, "Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime," Plasma Sources Sci. Technol. Vol. 19, pp. 065015 (1-10), 2010. [DOI:10.1088/0963-0252/19/6/065015]
25. D.Z. Pai, "Nanomaterials synthesis at atmospheric pressure using nanosecond discharges," J. Phys. D: Appl. Phys. Vol. 44, pp. 174024 (1-7), 2011. [DOI:10.1088/0022-3727/44/17/174024]
26. A. Montello, D. Burnette, M. Nishihara, W.R. Lempert, and I.V. Adamovich, "Dynamics of Rapid Localized Heating in Nanosecond Pulse Discharges for High Speed Flow Control," J. Fluid Sci. Technol. Vol. 8, pp. 147-159, 2013. [DOI:10.1299/jfst.8.147]
27. G.V. Naidis, "Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses," J. Phys. D: Appl. Phys. Vol. 41, pp. 234017 (1-8), 2008. [DOI:10.1088/0022-3727/41/23/234017]
28. G. Sary, G. Dufour, F. Rogier, and K. Kourtzanidis, "Modeling and Parametric Study of a Plasma Synthetic Jet for Flow Control," Am. Inst. Aeronaut. Astronaut. (AIAA) J. Vol. 52, pp. 1591-1603, 2014. [DOI:10.2514/1.J052521]
29. S.M. Starikovskaia, "Plasma assisted ignition and combustion," J. Phys. D: Appl. Phys. Vol. 39, pp. R265-R299, 2006. [DOI:10.1088/0022-3727/39/16/R01]
30. D.V. Roupassov, A.A. Nikipelov, M.M. Nudnova and A.Y. Starikovskii, "Flow Separation Control by Plasma Actuator with Nanosecond Pulsed-Periodic Discharge," Am. Inst. Aeronaut. Astronaut. (AIAA) J. Vol. 47, pp. 168-185, 2009. [DOI:10.2514/1.38113]
31. A. Yu. Starikovskii, A.A. Nikipelov, M.M. Nudnova, and D.V. Roupassov, "SDBD plasma actuator with nanosecond pulse-periodic discharge," Plasma Sources Sci. Technol. Vol. 18, pp. 034015 (1-17), 2009. [DOI:10.1088/0963-0252/18/3/034015]
32. K. Kourtzanidis, F. Rogier, and J.P. Boeuf, "Gas heating effects on the formation and propagation of a microwave streamer in air," J. Appl. Phys. Vol. 118, pp. 103301 (1-9), 2015. [DOI:10.1063/1.4930163]
33. S.C. Schaub, J.S. Hummelt, W.C. Guss, M.A. Shapiro, and R.J. Temkin, "Electron density and gas density measurements in a millimeter-wave discharge," Phys. Plasmas, Vol. 23, pp. 083512 (1-8), 2016. [DOI:10.1063/1.4959171]
34. I. Shkurenkov and I.V. Adamovich, "Energy balance in nanosecond pulse discharges in nitrogen and air," Plasma Sources Sci. Technol. Vol. 25, pp. 015021 (1-12), 2016. [DOI:10.1088/0963-0252/25/1/015021]
35. N.A. Popov, "Investigation of the Mechanism for Rapid Heating of Nitrogen and Air in Gas Discharges," Plasma Phys. Rep. Vol. 27, pp. 886-896, 2001. [DOI:10.1134/1.1409722]
36. N.A. Popov, "Kinetic Processes Initiated by a Nanosecond High-Current Discharge in Hot Air," Plasma Phys. Rep. Vol. 37, pp. 807-815, 2011. [DOI:10.1134/S1063780X1108006X]
37. N.A. Popov, "Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism," J. Phys. D: Appl. Phys. Vol. 44, pp. 285201 (1-16), 2011. [DOI:10.1088/0022-3727/44/28/285201]
38. N.A. Popov, "Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production," Plasma Sources Sci. Technol. Vol. 25, pp. 044003 (1-17), 2016. [DOI:10.1088/0963-0252/25/4/044003]
39. A. Komuro and R. Ono, "Two-dimensional simulation of fast gas heating in an atmospheric pressure streamer discharge and humidity effects," J. Phys. D: Appl. Phys. Vol. 47, pp. 155202 (1-13), 2014. [DOI:10.1088/0022-3727/47/15/155202]
40. N.L. Aleksandrov, S.V. Kindusheva, M.M. Nudnova, and A.Y.U. Starikovskiy, "Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields," J. Phys. D: Appl. Phys. Vol. 43, pp. 255201 (1-19), 2010. [DOI:10.1088/0022-3727/43/25/255201]
41. D.L. Rusterholtz, D.A. Lacoste, G.D. Stancu, D.Z. Pai, and C.O. Laux, "Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges," J. Phys. D: Appl. Phys. Vol. 46, pp. 464010 (1-21), 2013. [DOI:10.1088/0022-3727/46/46/464010]
42. E.I. Mintoussov, S.J. Pendleton, F.G. Gerbault, N.A. Popov, and S.M. Starikovskaia, "Fast gas heating in nitrogen-oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures," J. Phys. D: Appl. Phys. Vol. 44, pp. 285202 (1-13), 2011. [DOI:10.1088/0022-3727/44/28/285202]
43. A. Lo, G. Cleon, P. Vervisch, and A. Cessou, "Spontaneous Raman scattering: a useful tool for investigating the afterglow of nanosecond scale discharges in air," Appl. Phys. B, Vol. 107, pp. 229-242, 2012. [DOI:10.1007/s00340-012-4874-3]
44. A. Lo, A. Cessou, P. Boubert, and P. Vervisch, "Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of and ," J. Phys. D: Appl. Phys. Vol. 47, pp. 115201 (1-14), 2014. [DOI:10.1088/0022-3727/47/11/115201]
45. S. Lanier, I. Shkurenkov, I.V. Adamovich, and W.R. Lempert, "Two-stage energy thermalization mechanism in nanosecond pulse discharges in air and hydrogen-air mixtures," Plasma Sources Sci. Technol. Vol. 24, pp. 025005 (1-13), 2015. [DOI:10.1088/0963-0252/24/2/025005]
46. A. Roettgen, I. Shkurenkov, M.S. Simeni, V. Petrishchev, I.V. Adamovich, and W.R. Lempert, "Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium," Plasma Sources Sci. Technol. Vol. 25, pp. 055009 (1-13), 2016. [DOI:10.1088/0963-0252/25/5/055009]
47. N.D. Lepikhin, N.A. Popov, and S.M. Starikovskaia, "Fast gas heating and radial distribution of active species in nanosecond capillary discharge in pure nitrogen and : mixtures," Plasma Sources Sci. Technol. Vol. 27, 055005 (1-18), 2018. [DOI:10.1088/1361-6595/aab74e]
48. A. Flitti and S. Pancheshnyi, "Gas heating in fast pulsed discharges in - mixtures," Eur. Phys. J. Appl. Phys. Vol. 45, pp. 21001 (1-7), 2009. [DOI:10.1051/epjap/2009011]
49. V. Guerra and J. Loureiro, "Self-consistent electron and heavy-particle kinetics in a low-pressure - glow discharge," Plasma Sources Sci. Technol. Vol. 6, pp. 373-385, 1997. [DOI:10.1088/0963-0252/6/3/014]
50. C.D. Pintassilgo, V. Guerra, O. Guaitella, and A. Rousseau, "Study of gas heating mechanisms in millisecond pulsed discharges and afterglows in air at low pressures," Plasma Sources Sci. Technol. Vol. 23, pp. 025006 (1-19), 2014. [DOI:10.1088/0963-0252/23/2/025006]
51. C.D. Pintassilgo and V. Guerra, "On the different regimes of gas heating in air plasmas," Plasma Sources Sci. Technol. Vol. 24, pp. 055009 (1-15), 2015. [DOI:10.1088/0963-0252/24/5/055009]
52. C.D. Pintassilgo and V. Guerra, "Power Transfer to Gas Heating in Pure and in - Plasmas," J. Phys. Chem. C, Vol. 120, pp. 21184−21201, 2016. [DOI:10.1021/acs.jpcc.6b05463]
53. S. Biabani and G. Foroutan, "Self consistent multi-fluid FDTD simulations of a nanosecond high power microwave discharge in air," Phys. Lett. A, Vol. 382, pp. 2720-2731, 2018. [DOI:10.1016/j.physleta.2018.06.048]
54. See http://www.lxcat.laplace.univ-tlse.fr to access BOLSIG+, which is a free software for numerical solution of the Boltzmann equation for electrons in weakly ionized gases.
55. I.A. Kossyi, A. Yu. Kostinsky, A.A. Matveyev, and V.P. Silakov, "Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures," Plasma Sources Sci. Technol. Vol. 1, pp. 207-220, 1992. [DOI:10.1088/0963-0252/1/3/011]
56. M. Capitelli, C.M. Ferreira, B.F. Gordiets, and A.I. Osipov, Plasma Kinetics in Atmosphere Gases, Springer, Berlin, 2000. [DOI:10.1007/978-3-662-04158-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb