Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 171-180 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zolfaghari M. The Impact of Doping on the Anti-Resonance Effects of A11g Mode of InSe. IJOP 2019; 13 (2) :171-180
URL: http://ijop.ir/article-1-339-en.html
Department of Physics, University of Sistan and Baluchestan
Abstract:   (4485 Views)
A comparative study of anti-resonance effects in InSe and InSe doped with GaS, using the resonant Raman spectroscopy is presented. The nonpolar optical phonon of  symmetry in InSe exhibits a pronounced decrease in the Raman cross-section at excitation energy 2.585 eV. In InSe doped with GaS samples, it is found that the anti-resonance behavior decreases as doping contents are increased. To account these observations, a model is applied to explain and interpret the Raman intensity evolution versus incident photon energy. The agreement between theory and experiment is good.

 
Full-Text [PDF 441 kb]   (2659 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/03/15 | Revised: 2018/05/29 | Accepted: 2018/10/2 | Published: 2019/12/27

References
1. K. Dani, J. Lee, R. Sharma, A. Mohite, C. Galande, P. Ajayan, A. Dattelbaum, H. Htoon, A. Taylor, and R. Prasankumar. "Intraband conductivity response in Graphene observed using Ultrafast Infrared-Pump Visible-Probe Spectroscopy," Phys. Rev. B: Condens. Matt. Vol. 86, pp. 125403 (1-7), 2012. [DOI:10.1103/PhysRevB.86.125403]
2. S. Gilbertson, G.L. Dakovski, T. Durakiewicz, J.-X. Zhu, K.M. Dani, A.D. Mohite, A. Dattelbaum, and G. Rodriguez. "Tracing Ultrafast Separation and Coalescence of Carrier Distributions in Graphene with Time-Resolved Photoemission," J. Phys. Chem. Lett. Vol. 3, pp. 64-68, 2011. [DOI:10.1021/jz2014067]
3. B.Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang "Broadband high photoresponse from pure Monolayer Graphene Photodetector," Nat. Commun. Vol. 4, pp. 1811 (1-11), 2013. [DOI:10.1038/ncomms2830]
4. F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, and P. Avouris. "Ultrafast Graphene Photodetector," Nat. Nanotechnol. Vol. 4, pp. 839-843, 2009. [DOI:10.1038/nnano.2009.292]
5. T. Mueller, F. Xia, and P. Avouris. "Graphene photodetectors for high-speed optical communications," Nat. Photon. Vol. 4, pp. 297-301, 2010. [DOI:10.1038/nphoton.2010.40]
6. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H.Yamaguchi, G. Gupta, R. Vajtai, A.D. Mohite, and P.M. Ajayan. "Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe," ACS Nano. Vol. 8, pp. 1263-1272, 2014. [DOI:10.1021/nn405036u]
7. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao "Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates," Nano Lett. Vol. 13, pp. 1649-1654, 2013. [DOI:10.1021/nl400107k]
8. S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P.M. Ajayan. "Synthesis and photo response of large GaSe atomic layers," Nano Lett. Vol. 13, pp. 2777-2781, 2013. [DOI:10.1021/nl4010089]
9. P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao. "Synthesis of few-layer GaSe nanosheets for high performance photodetectors," ACS Nano. Vol. 6, pp. 5988-5994, 2012. [DOI:10.1021/nn300889c]
10. M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Zh. Liu "Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy," J. Am. Chem. Soc. Vol. 135, pp. 13274-13277, 2013. [DOI:10.1021/ja406351u]
11. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov. "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Erratum. Opt. Lett. Vol. 28, pp. 136-136, 2003. [DOI:10.1364/OL.28.000136]
12. K.R. Allakhverdiev, M.Ö. Yetis, S. Özbek, T. K. Baykara, and E.Y. Salaev. "Effective nonlinear GaSe crystal, optical properties and applications," Laser Phys. Vol. 19, pp. 1092-1104, 2009. [DOI:10.1134/S1054660X09050375]
13. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer. "Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the Near Infrared," Appl. Phys. Lett. Vol. 85, pp. 3360-3362, 2004. [DOI:10.1063/1.1808232]
14. A. Segura, J. Bouvier, M. Andrés, F. Manjón, and F.V. Munoz, "Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by Light Pulses," Phys. Rev. B: Condens. Matt. Vol. 56, pp. 4075-4084, 1997. [DOI:10.1103/PhysRevB.56.4075]
15. D.J. Late, B. Liu, J. Luo, A. Yan, H.S. Matte, M. Grayson, C.N. Rao, and V.P. Dravid. "GaS and GaSe ultrathin layer transistors," Adv. Mater. Vol. 24, pp. 3549-3554, 2012. [DOI:10.1002/adma.201201361]
16. D. V. Rybkovskiy, N. R. Arutyunyan, A. S. Orekhov, I. A. Gromchenko, I. V. Vorobiev, A. V. Osadchy, E. Y. Salaev, T. K. Baykara, K. R. Allakhverdiev, and E.D. Obraztsova. "Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions," Phys. Rev. B: Condens. Matt. Vol. 84, pp. 085314 (1-7), 2011. [DOI:10.1103/PhysRevB.84.085314]
17. O.Z. Alekperov, M.O. Godjaev, M.Z. Zarbaliev, and R.A. Suleimanov. "Interband photoconductivity in layer semiconductors GaSe, InSe and GaS," Solid State Commun. Vol. 77, pp. 65-67, 1991. [DOI:10.1016/0038-1098(91)90428-X]
18. N. Kuroda and Y. Nishina. "Resonant Raman scattering at higher M0 exciton Edge in layer compound InSe," Solid State Commun. Vol. 28, pp. 439-443, 1978. [DOI:10.1016/0038-1098(78)90834-7]
19. S. Jand and J.L. Brebner. "Group theoretical analysis of lattice vibrations in GaSe polytypes," Can. J. Phys. Vol. 52, pp. 2454-2458, 1974. [DOI:10.1139/p74-317]
20. N. Kuroda and Y. Nishina. "Directional dispersion of extraordinary phonons in layer compound InSe," Solid State Commun. Vol. 30, pp. 95-98, 1979. [DOI:10.1016/0038-1098(79)91154-2]
21. N. Kuroda and Y. Nishina. "Resonance Raman scattering study on exciton and polaron anisotropies in InSe," Solid State Commun. Vol. 34, pp. 481-484, 1980. [DOI:10.1016/0038-1098(80)90656-0]
22. N. Kuroda, I. Munakata, and Y. Nishina. "Exciton selection rules in the polarized resonant Raman scattering by LO phonons in InSe," J. Phys. Soc. Jpn. Vol. 51, pp. 839-843, 1982. [DOI:10.1143/JPSJ.51.839]
23. S. Ashokan, K.P. Jain, M. Balkanski, and C. Julien. "Resonant Raman scattering in quasi-two-dimensional InSe near the M0 and M1 critical points," Phys. Rev. B. Vol. 44, pp. 11133-11142, 1991. [DOI:10.1103/PhysRevB.44.11133]
24. M. Zolfaghari, K.P. Jain, H.S. Mavi, M. Balkanski, C. Julien, and A. Chevy. "Raman investigation of InSe doped with GaS," Mater. Sci. Eng. B, Vol. 38, pp. 161-170, 1996. [DOI:10.1016/0921-5107(95)01375-X]
25. J.M. Ralston, R.L. Wadsack, and R.K. Chang "Resonant cancelation of Raman scattering from CdS and Si," Phys. Rev. Lett. Vol. 25, pp. 814-818, 1970. [DOI:10.1103/PhysRevLett.25.814]
26. T.C. Damen and J.F. Scott. "Anti-resonance of Raman cross-sections for nonpolar phonons in CdS," Solid State Commun. Vol. 9, pp. 383-385, 1971. [DOI:10.1016/0038-1098(71)90260-2]
27. R.M. Hoff and J.C. Irwin. "Resonant Raman scattering in GaSe," Phys. Rev. B, Vol. 10, pp. 3464-3470, 1974. [DOI:10.1103/PhysRevB.10.3464]
28. R. Zeyher, C.S. Ting and J.L. Birman. "Polariton theory of first-order Raman scattering in finite crystals for transparent and absorbing frequency regions," Phys. Rev. B, Vol. 10, pp. 1725-1740, 1974. [DOI:10.1103/PhysRevB.10.1725]
29. K.P. Jain and G. Choudhury." Resonant Raman scattering at the critical points of semiconductors," Phys. Rev. B. Vol. 8, pp. 676-681, 1973. [DOI:10.1103/PhysRevB.8.676]
30. J. Weszka, Ph. Daniel, A.M. Burian, A. Burian, and M. Zelechower. "Resonance Raman scattering in In0.45Se0.55 amorphous films," Solid State Commun. Vol. 118, pp. 97-102, 2001. [DOI:10.1016/S0038-1098(01)00042-4]
31. J. Weszka, Ph. Daniel, A. Burian, A.M. Burian, and A.T. Naguyen. "Raman scattering in In2Se3 and InSe2 amorphous films," J. Non-Cryt. Solids, Vol. 265, pp. 98-108, 2000. [DOI:10.1016/S0022-3093(99)00710-3]
32. J. Weszka, Ph. Daniel, A.M. Burian, A. Burian, and M. Zelechower. "Temperature dependence of Raman scattering in amorphous films of In1-xSex alloys," Solid State Commun. Vol. 1l9, pp. 533-537, 2001. [DOI:10.1016/S0038-1098(01)00272-1]
33. S. Marsillac, A.M. Combot-Marie, J.C. Bernede, and A. Conan. "Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction," Thin Solid Film, Vol. 288, pp. 14-20, 1996. [DOI:10.1016/S0040-6090(96)08799-8]
34. A. Chevy, Cristallogénèse et caractérisation du monoséléniure d'indium-conversion photovoltaïque de l'energie, PhD Thesis, , Universitè Pierre et Marie Curie, Paris 1981.
35. A. Chevy, A. Kuhn and M.S. Martin. "Large InSe monocrystals grown from A non-stoichiometric melt," J. Cryst. Growth. Vol. 38, pp. 118-123, 1977. [DOI:10.1016/0022-0248(77)90381-5]
36. P. Houdy, Croissance, caractérisation, propriétés de matériaux pour cellules solaires, These de 3êam cycle, Universitè de Paris VII, 1982.
37. G.I. Abutalyboy and M.L. Belle, "Modulation spectrum and profile of the absorption line of hyperbolic excitons in indium selenide," Sov. Phys. Semicond. Vol. 8, pp. 1559-1562, 1975.
38. S. Nakashima, M. Hangyo, and A. Mitsuishi, in J. R. Durig (ed.) "Vibrational Spectroscopy of layered materials," Elsevier, Amsterdam, Vol. 14, in Vibrational Spectroscopy and Structures, P. 305-308, 1985.
39. R. Loudon, "Theory of the first-order Raman effect in crystals," Proc. R. Soc. Lond. A. Vol. 275, pp. 218-232, 1963. [DOI:10.1098/rspa.1963.0166]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb