Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 89-96 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Morovvati B, Malekfar R. Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles. IJOP. 2019; 13 (2) :89-96
URL: http://ijop.ir/article-1-337-en.html
1- Atomic and Molecular Physics, Department of Physics, Tarbiat Modares University,
Abstract:   (1388 Views)
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the optical behaviors of their silver shell and Ag NPs. Absorption spectra of nanoparticles were measured by ultraviolet–visible (UV–Vis.) spectroscopy, and their approximate sizes were determined by dynamic light scattering (DLS). The core–shell nanoparticles were approximately the same size as the largest Ag NPs (35 nm) and had the same maximum absorption wavelength. The potential of these substrates for detection applications was investigated with 1 M and 0.1 mM solutions of Raman-active molecule of crystal violet (CV) dye. The Raman enhancement signal was recorded for 0.1 mM solution with 532 nm laser wavelength, and the obtained spectra enhancement factor (EF) was calculated. EF values indicated that although the silver and gold–silver core–shell nanoparticles had the same surface plasmon resonance, the substrate with smaller Ag NPs had the highest enhancement factor compared to other substrates, which was 9.5´103, and the core–shell substrate even had a slightly lower enhancement factor in compare with the large Ag NPs.
Full-Text [PDF 529 kb]   (481 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/03/11 | Revised: 2018/06/8 | Accepted: 2018/07/18 | Published: 2019/12/27

1. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys, Vol. 57, pp. 783-826, 1985. [DOI:10.1103/RevModPhys.57.783]
2. A. Otto, "The chemical (electronic) contribution to surface-enhanced Raman scattering," J. Raman Spectrosc, Vol. 36, pp. 497-509, 2005. [DOI:10.1002/jrs.1355]
3. A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev, Vol. 27, pp. 241-250, 1998. [DOI:10.1039/a827241z]
4. L. M. Liz-Marzan, "Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles," Langmuir, Vol. 22 (1), pp. 32-41, 2006. [DOI:10.1021/la0513353]
5. R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, "Unraveling the Evolution and Nature of the Plasmons in (Au Core)-(Ag Shell) Nanorods," Adv. Mater, Vol. 24, pp. 200-207, 2012. [DOI:10.1002/adma.201201896]
6. M. F. Cardinal, B. Rodriguez-Gonzalez, R. A. Alvarez-Puebla, J. Perez-Juste, and L. M. Liz-Marzan, "Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating," J. Phys. Chem. C, Vol. 114 (23), pp. 10417-10423, 2010. [DOI:10.1021/jp102519n]
7. A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzan, J. Perez-Juste, and I. Pastoriza-Santos, "Size tunable Au@Ag core-shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties," Langmuir, Vol. 29 (48), pp. 15076-15082, 2013. [DOI:10.1021/la403707j]
8. A. Sanchez-Iglesias, E. Carbo-Argibay, A. Glaria, B. Rodriguez-Gonzalez, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, "Rapid Epitaxial Growth of Ag on Au Nanoparticles: From Au Nanorods to Core-Shell Au@Ag Octahedrons," Chem.-Eur.J, Vol. 16, pp. 5558-5563, 2010. [DOI:10.1002/chem.201000144]
9. M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, "Synthesis of Au(Core)/Ag(Shell) Nanoparticles and their Conversion to AuAg Alloy Nanoparticles," Small, Vol. 7, pp. 230-234, 2011. [DOI:10.1002/smll.201001138]
10. M. Fan and A. G. Brolo, "Silver nanoparticles self-assembly as SERS substrates with near single molecule detection limit," Phys. Chem. Chem. Phys, Vol. 11(34), pp. 7381-7389, 2009. [DOI:10.1039/b904744a]
11. L. Zhang, "Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection," Appl. Surf. Sci. Vol. 270, pp. 292-294, 2013. [DOI:10.1016/j.apsusc.2013.01.014]
12. L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, "Synthesis and study of silver nanoparticles," ‎Appl. Surf. Sci, Vol. 84 (2), pp. 322-325, 2007. [DOI:10.1021/ed084p322]
13. S. L. Smitha, K.M. Nissamudeen, D. Philip, and K. G. Gopchandran, "Studies on Surface Plasmon Resonance and Photoluminescence of Silver Nanoparticles," Spectrochim. Acta A, Vol. 71, pp. 186-190, 2008. [DOI:10.1016/j.saa.2007.12.002]
14. G. Frens, "Controlled Nucleation for The Regulation of the Particle Size In Monodisperse Gold Suspensions," Nat. Phys. Sci. Vol. 241, pp. 20-22, 1973. [DOI:10.1038/physci241020a0]
15. D. M. Mott, D. T. N. Anh, P. Singh, C. Shankar, and S. Maenosono, "Electronic Transfer as A Route to Increase The Chemical Stability In Gold And Silver Core-Shell Nanoparticles," Adv. Colloid Interface Sci. Vol. 185-186, pp. 14-33, 2012. [DOI:10.1016/j.cis.2012.08.007]
16. S. Zhu, C. Fan, J. Wang, J. He, and E. Liang, "Self-Assembled Ag Nanoparticles for Surface Enhanced Raman Scattering," Opt. Rev. Vol. 20, pp. 361-366, 2013. [DOI:10.1007/s10043-013-0065-7]
17. K. Mallik, M. Mandal, N. Pradhan, and T. Pal, "Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of Core−Shell Type Structures," Nano Lett, Vol. 1 (6), pp. 319-322, 2001. [DOI:10.1021/nl0100264]
18. G. S. Bumbrah and R. M. Sharma, "Raman spectroscopy-Basic principle, instrumentation and selected applications for the characterization of drugs of abuse," Egypt. J. Forensic Sci. Vol. 6 (3), pp. 209-215, 2016. [DOI:10.1016/j.ejfs.2015.06.001]
19. T. Sato, D. Brown and B. F. G. Johnson, "Nucleation and growth of nano-gold colloidal lattices," Chem. Commun. Vol.11, pp. 1007-1088, 1997. [DOI:10.1039/a701627a]
20. E. J. Liang, X. L. Ye, and W. Kiefer, "Surface-Enhanced Raman Spectroscopy of Crystal Violet in the Presence of Halide and Halate Ions with Near-Infrared Wavelength Excitation," J. Phys. Chem. A, Vol.101 (40), pp. 7330-7335, 1997. [DOI:10.1021/jp971960j]
21. H. P. J. M. Dekkers and E. C. M. Kielman-Van Luyt, "Magnetic circular dichroism of the triphenylcarbenium ion and some symmetrically para-substituted derivatives," Mol. Phys, Vol. 31, pp. 1001-1019, 1976. [DOI:10.1080/00268977600100761]
22. C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, "Toward Hyperuniform Disordered Plasmonic Nanostructures for Reproducible Surface-Enhanced Raman Spectroscopy," Phys. Chem. Chem. Phys, Vol. 17, pp. 8061-8069, 2015. [DOI:10.1039/C4CP06024E]
23. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser Photonics Rev, Vol. 4 (6), pp. 795-808, 2010. [DOI:10.1002/lpor.200900055]
24. K. G. Stamplecoskie and J. C. Scaiano, "Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy," J. Phys. Chem. C, Vol. 115, pp. 1403-1409, 2011. [DOI:10.1021/jp106666t]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb